RNAi 研究中的修饰亚磷酰胺的作用

RNAi 研究中的修饰亚磷酰胺的作用

修饰的DNA 亚磷酰胺RNA 亚磷酰胺在研究中发挥着至关重要的作用,因为它们允许将特定的化学修饰引入核酸中,从而能够研究结构功能关系、基因表达调控以及基因编辑和 RNA 干扰 (RNAi) 等治疗应用。

最近,科学家(见下文参考文献)研究了 RNA 干扰作为靶向基因沉默工具的潜力及其在基因技术和治疗开发中的应用。RNAi 是一种自然防御机制,利用短干扰 RNA (siRNA) 来沉默特定基因。这些 siRNA 形成 RNA 诱导的沉默复合物 (RISC),可降解目标 mRNA 序列,从而导致基因沉默,但不会引起非特异性 RNA 降解。这种特异性使得 siRNA 成为研究生物功能的有力工具和多种疾病的潜在治疗剂。

研究人员合成了三种双链体 RNA,其中修饰的核苷取代了 siRNA 3' 突出端区域中未修饰的核苷。修饰的核苷是基于对肝细胞核因子4a (HNF4α)(一种参与肝脏发育和组织特异性特征表达的核激素受体)的研究而设计的,以提高针对该受体的siRNA功效。体外实验表明,与未修饰的 siRNA 相比,修饰核苷的 siRNA 能够更有效地抑制 HNF4α。

修饰 siRNA 的合成涉及修饰核苷的制备以及随后 siRNA 分子的组装(图 1 和 2)。采用亚磷酰胺化学合成修饰的核苷,然后使用自动 DNA/RNA 合成仪将其掺入 siRNA 链中。所得的 siRNA 通过高效液相色谱 (HPLC) 纯化,以确保高纯度。

RNAi 研究中的修饰亚磷酰胺的作用

RNAi 研究中的修饰亚磷酰胺的作用

图 2. 使用 21 个修饰核苷合成的修饰 siRNA 寡核糖核苷酸之一,

脂质在生物学中的作用

脂质在生物学中的作用

结构性脂质

一些脂质主要充当细胞膜的结构成分。甘油磷脂的两亲性特征和形状在水环境中引发脂质双层的形成,脂质双层是所有细胞膜的基础。细胞中存在数百种不同的磷脂分子种类,其极性头基或酰基尾部的变化使它们具有特性,可以参与膜融合和裂变,产生细胞信号脂质,并帮助分泌脂蛋白。甾醇和鞘磷脂也是膜的重要结构成分。


 磷脂酰胆碱

 磷脂酰乙醇胺

 磷脂酰甘油

 磷脂酰肌醇

 磷脂酰丝氨酸

 磷脂酸

 鞘氨醇磷酰胆碱(鞘磷脂)

 甾醇脂质

脂肪生成和脂质储存

在脂肪生成过程中,脂肪酸是通过重复添加二碳单位(来自乙酰辅酶A)产生的。然后脂肪酸可以酯化为甘油以最终形成三酰基甘油,或酯化为胆固醇以形成胆固醇酯。三酰甘油起到脂肪酸储存库的作用,当没有碳水化合物时,可以很容易地将其用于细胞呼吸。它们储存在脂滴内,脂滴也是膜形成和维持所必需的胆固醇的储存库。脂滴维持能量和氧化还原稳态,有助于支持内质网和质膜的完整性。它们将脂肪酸引导至线粒体,帮助产生脂质介质,调节脂肪分解和脂肪吞噬,并防止脂毒性。

·  胆固醇酯

·  脂肪酸合成酶

·  三酰甘油

·  三酰甘油合成

· 二酰基甘油酰基转移酶

·  脂滴形成

·  脂肪分解

· 脂肪甘油三酯脂肪酶

· 激素敏感脂肪酶

· 单酰甘油脂肪酶

·  甾醇脂质

脂质运输

由于其亲脂性,脂肪酸可以跨质膜扩散,但必须通过脂蛋白(例如乳糜微粒、VLDL、LDL 和 HDL)内的血流运输,或附着在脂肪酸结合蛋白上。脂蛋白脂肪酶释放游离脂肪酸,然后主要通过蛋白质载体介导的途径,包括脂肪酸转位酶 (CD36)、脂肪酸转运蛋白和脂肪酸结合蛋白,转运到细胞中。

·  脂蛋白

·  脂蛋白脂肪酶

·  脂肪酸转位酶

·  脂肪酸转运蛋白

·  脂肪酸结合蛋白

·  PCSK9

·  胆固醇酯转移蛋白

生物活性脂质

脂质作为细胞、组织和生物体中多种过程的介质发挥着关键作用。例如,物理和化学刺激引发花生四烯酸从膜磷脂中释放,导致类二十烷酸、前列腺素、白三烯、血栓素或脂氧素等炎症介质的合成。其他磷脂(例如, lyso-PA、多磷酸肌醇或 PAF)和脂酰(例如, resolvins 或anandamide)也是生物活性脂质,其他类别的成员也是如此,例如甾醇(例如,羟基胆固醇、类固醇激素或胆汁)酸)、甘油脂(例如,二酰甘油酯或 2-花生四烯酰甘油)、异戊烯醇(例如,泛醌)或鞘脂(例如神经酰胺或 1-磷酸鞘氨醇)。

  •  环加氧酶途径

  •  细胞色素 P450 通路

  •  单酰基甘油

  •  二酰基甘油

  •  甘油磷脂

  •  脂氧合酶途径

  •  异戊烯醇脂质

  •  鞘脂类

  •  甾醇脂质

动物模型在传染病研究中的作用

动物模型在传染病研究中的作用

传染病仍然是一个重大的全球健康挑战。他们强调了病原体和宿主之间复杂的猫捉老鼠的游戏,揭示了只有通过应用合适的生物模型才能正确解读的相互作用。1 动物模型是这一追求的关键参与者,它充当放大镜,使我们能够深入研究宿主与病原体相互作用的微观世界。

迷宫的中心:聚光灯下的小鼠模型

小鼠模型长期以来一直是传染病研究的关键,这主要是因为它们的遗传可塑性以及与人类惊人的生理相似性。这些模型的使用对于了解病原体如何引起疾病、定义特定宿主基因在疾病发展中的作用以及确定预防或治疗各种传染源的潜在目标至关重要。1不同的小鼠品系,从近交系小鼠到基因敲除小鼠,甚至人源化小鼠,为探索广泛的传染病提供了宝贵的画布。

动物模型在传染病研究中的作用

对感染小鼠的甲型流感病毒和 2 型肺炎球菌菌株 D39 变种共感染的小鼠细菌感染后 24 小时收集的肺切片进行组织病理学分析。使用兔抗肺炎链球菌多克隆抗体(目录号# NB100-64502)对肺切片进行肺炎球菌IHC分析,或使用大鼠抗Ly-6G/Ly-6C单克隆抗体(目录号# NB600-1387)对中性粒细胞进行IHC分析。以 4 倍放大倍率拍摄的代表性图像,插图为 60 倍放大倍率。图片由田纳西州 UTHSC 的 Amanda P. Smith 博士提供

超越常规:非常规动物模型的兴起

虽然小鼠在传染病研究领域占据主导地位,但越来越多的非传统动物模型的使用呈增长趋势。这种转变是由基因操作的进步推动的,使研究人员能够在整个研究过程中根据需要修改宿主和病原体。此类模型的例子包括非人类灵长类动物豚鼠鸭子果蝇(果蝇)、斑马鱼和蚊子,每个都提供了关于宿主与病原体相互作用的视角。例如,斑马鱼胚胎在阐明疾病发病机制,特别是与人类细菌感染有关的发病机制方面越来越受欢迎。2

动物模型在传染病研究中的作用

感染鸡神经细胞中新城疫病毒抗体表达和细胞标记物的免疫荧光分析。感染新城疫病毒 (NDV) TxGB 株的鸡神经细胞在感染后 12 小时的代表性图像。第一列对各自细胞标记物进行染色(神经元:TUJ-1,少突胶质细胞:Olig2,星形胶质细胞:GFAP)。第二列用小鼠抗 NVD 单克隆抗体(目录号NBP2-11633染色以检测NVD表达。第三是前两列的合并。来自细胞标记物和 NDV 表达的双重免疫荧光信号由白色箭头表示。在所有图像中,细胞核均用 DAPI(伪蓝色)染色。图片由 CiteAb 从以下出版物 收集并裁剪,并获得CC-BY 许可

追求治愈:迈向治疗开发和疫苗发现

动物模型的核心作用远远超出了对疾病的理解,延伸到了疫苗发现和治疗开发的关键领域。动物模型,特别是小鼠模型,已被证明有助于在临床前水平设计药物和疫苗策略。他们为了解抗菌药物的药代动力学和药效学做出了重大贡献,为可从模型转化为人类的最佳药物暴露提供了信息。3

此外,这些模型对于发现新的治疗途径至关重要。根据其与人类疾病的生物学相关性选择精心设计的动物模型,可以有助于创建可转化的科学数据,促进有效疗法和干预措施的开发。4  

动物模型在传染病研究中的作用

通过蛋白质印迹检测果蝇 Smad2。用羊抗果蝇 Smad2 多克隆抗体(R&D Systems 目录号AF7948)和抗羊 IgG 二抗探测野生型和 Smad2 无效突变果蝇幼虫提取物的蛋白质印迹分析。在野生型提取物中检测到约 58 kDa 的 Smad2 特异性条带,但在突变型提取物中未检测到。图片由美国明尼苏达州明尼阿波利斯市明尼苏达大学遗传学、细胞生物学和发育系的 Aidan Peterson 博士和 Michael O'Connor 博士提供。

然而,动物模型的巨大实用性也伴随着道德的代价。 Russell & Burch 提出的 3R 原则(减少、细化、替换)等指导方针为研究人员提供了一个路线图,以最大限度地减少使用的动物数量、减轻它们的痛苦,并尽可能寻求替代方案。3强调在研究中道德和负责任地使用动物与研究结果本身同样重要。

合成肽库的作用分析

合成肽库的作用分析

肽在蛋白质相互作用分析中的价值

肽代表较大蛋白质的特定结构域或片段。他们的主要优势是结合大分子并破坏或促进生物过程的能力,这是细胞信号和药物开发应用的关键特性。除了它们的柔韧性之外,肽比蛋白质小得多,因此生产起来更容易、更快、更具成本效益。

由于它们的尺寸,它们也可以更有效地穿过膜并到达目标,否则这些目标将不会被吸入。此外,它们与用于高通量蛋白质相互作用分析的许多工具兼容。

对于这种类型的分析,必须快速合成大量的多肽。这些集合也称为肽库,可以包含多个随机或靶向的取代和修饰,使研究人员能够了解蛋白质的哪些残基对于相互作用是必需的,哪些残基可以被取代以增强稳定性和生物活性。

肽库的高通量筛选

蛋白质相互作用分析包括蛋白质-蛋白质亲和力的研究。在这些研究中,肽可能是固定在不同的固体载体上或者用荧光或其他类型的染料标记并在溶液中筛选

这两种方法的主要区别在于肽的最终结构。当肽被固定在固体载体上时,它们的结构和生物活性可能被改变。因此,这些实验经常产生不能反映溶液中肽的真实生物活性的数据。

因此,优选使用游离肽进行高通量蛋白质相互作用分析。然而,这些分析并非没有挑战。事实上,在解决方案中,在确保检测保持高灵敏度和高稳定性的同时,使检测小型化和自动化往往更加困难。

考虑到这些要求,已经开发了许多分析方法来进行高通量的蛋白质相互作用分析。

用于蛋白质相互作用分析的ELISA

酶联免疫吸附测定仍然是蛋白质-蛋白质相互作用研究中受欢迎的形式。传统的ELISA使用96孔板,但新的检测方法使其小型化,进一步允许使用全自动设置中的384孔板

最常见的检测类型是比色检测,但ELISA可以很容易地适用于荧光检测。在这两种情况下,随着分析量的减少,对非常灵敏的检测方法的需求增加。

用于蛋白质相互作用研究的细胞毒性和抗微生物检测分析

基于细胞的细胞毒性分析或抗微生物分析在研究具有潜在细胞毒性或抗微生物活性的肽库时仍然有用。在传统意义上,这种类型的分析更难小型化和自动化。

然而,更新的技术正在不断发展,以快速预测大量的肽序列。新方法依赖于使用96或384孔微量滴定板,并在一段时间内测量细胞活力或生长。

基于亲和选择的质谱联用蛋白质相互作用分析

亲和选择与质谱联用(MS)是蛋白质相互作用研究中使用的传统方法的最新和最有前途的替代方法之一。这种方法被证明对筛选特别有用随机化的肽序列,最多样化的合成肽库。

这种方法基于游离肽(结合物)和固定在固体表面的一个或几个配体之间的相互作用。配体可以固定在树脂(经典亲和色谱)或磁珠。在这两种情况下,这些化合物被用于捕获和富集合成肽库,并随后通过液相色谱与质谱联用对具生物活性的化合物进行测序。

是什么让这些方法如此强大?基于MS的蛋白质相互作用分析方法最终达到了以前仅限于生物分析(即噬菌体、细菌或核糖体展示)的灵敏度水平。换句话说,筛选与遗传编码文库一样多样的合成肽文库(多达10个9)终于触手可及。

这些方法不仅与生物分析一样灵敏,而且与基因编码的文库相比,它们还具有重要的优势。与生物文库不同,合成文库不限于天然和未修饰的氨基酸。因此,基于质谱的修饰肽筛选有可能加快肽药物和生物标志物的发现。

结束语

合成肽库允许研究大量随机和修饰的肽集合。直到最近,使用这些文库研究蛋白质相互作用还仅限于低通量筛选方法。但是随着越来越敏感和小型化技术的兴起,合成库的使用已经超过了这些应用中的生物展示。

这种变化目前是由常规ELISA和基于细胞的活性测定的进一步小型化推动的,其中384孔板和自动化升压的使用已经标准化。此外,基于MS的方法与肽富集步骤相结合,最终达到了以前仅限于生物展示的多样性水平。

VitroGel 水凝胶中的胶凝作用如何发挥作用?

VitroGel 水凝胶中的胶凝作用如何发挥作用?

第一阶段:

 

VitroGel 溶液在室温下稳定且可自由流动。水凝胶凝胶化/形成始于将 VitroGel 溶液与细胞培养基混合。水凝胶分子与细胞培养基中的 Ca2+ 和 Na+ 等离子分子相互作用,形成基质结构(水凝胶)。

 

当使用少量离子分子时,水凝胶形成过程很慢。在此阶段,水凝胶柔软,具有剪切稀化和快速恢复的机械性能,这使得水凝胶易于转移到培养板或用于注射。
第二阶段:
 
软水凝胶形成后,在水凝胶顶部添加额外的细胞培养基将使更多的离子分子渗透到水凝胶基质中并进一步使水凝胶交联饱和。在此过程中会形成固体水凝胶。

VitroGel 水凝胶中的胶凝作用如何发挥作用?

喜树碱的作用机制

喜树碱的作用机制

喜树碱 (CPT) 类化合物对广谱肿瘤有效。他们的分子目标已确定为人类 DNA 拓扑异构酶 I (topo I)。CPT 通过阻断 topo-I 的裂解/重新连接反应的重新加入步骤来抑制 topo I,从而导致共价反应中间体(可裂解复合物)的积累。CPT 杀死细胞的主要机制是通过推进复制叉和 topo-I 可裂解复合物之间的潜在致命碰撞进行 S 期特异性杀伤。与转录机制的碰撞也被证明会触发长寿命的共价 topo-I DNA 复合物的形成,这有助于 CPT 细胞毒性。已经发现了涉及 topo-I 共价修饰的两种针对 topo-I 介导的 DNA 损伤的新型修复反应。第一个涉及泛素/26S 蛋白酶体通路的激活,导致 topo-I 的降解(CPT 诱导的 topo-I 下调)。第二个涉及 SUMO 与 topo-I 的结合。讨论了这些修复 topo-I 介导的 DNA 损伤的新机制在确定肿瘤细胞中 CPT 敏感性/抗性方面的潜在作用。

Ancell抗CD64(FcRI)F(ab’)2的作用

Ancell抗CD64(FcRI)F(ab’)2的作用

Ancell抗CD64(FcRI)F(ab’)2用于阻断调理血小板的吞噬作用

本研究着眼于抗血小板抗体糖基化对输血患者巨噬细胞介导的吞噬清除能力的影响。抗CD64单克隆抗体的F(ab’)2用作体外吞噬阻断对照。

“单核细胞来源的巨噬细胞用不同糖基化的抗HLA hIgG1调理的血小板的吞噬作用”Thijs L,Gesture Vidarsson等。


单核细胞来源巨噬细胞用不同糖基化的抗HLA hIgG1调理的血小板的吞噬作用

免疫介导的血小板难治性 (PR) 仍然是血小板输注情况下的一个重大问题,主要由针对 I 类人白细胞抗原 (HLA) 的同种异体抗体的存在引起。用这些同种抗体调理供体血小板可通过多种机制(包括抗体依赖性细胞吞噬作用 (ADCP))在输血后快速清除。有趣的是,并非所有同种异体免疫患者都会对不匹配的血小板输注产生PR,这表明患者之间HLA特异性IgG反应存在差异。以前,我们观察到抗HLA抗体的糖基化谱在PR患者之间差异很大,特别是在Fc半乳糖基化,唾液酸化和岩藻糖基化方面。在目前的研究中, 我们研究了不同Fc糖基化模式对单核细胞来源的人巨噬细胞吞噬调理血小板的影响,已知对补体沉积和FcγR结合的影响。我们发现,单核细胞来源的M1巨噬细胞对抗体和补体调理的血小板的吞噬作用不受这些定性IgG-聚糖差异的影响。

 

介绍

血小板输注是一种经常给药的治疗方法,可降低血小板减少症患者的死亡率和出血性并发症。血小板输注的一个主要问题是血小板难治性(PR),这是指多次血小板输注后血小板计数增加不足。PR 的发病率范围为 5%-15%,因患者特征和血小板制品制备而异 [报价单1–4].在大约 20% 的 PR 病例中,血小板清除是免疫介导的,主要是由针对 I 类人白细胞抗原 (HLA) 的同种抗体的存在引起,偶尔还有人血小板抗原 (HPA) [报价单5–9].用这些同种抗体调理供体血小板可在输血后不久通过抗体依赖性细胞毒性 (ADCC)、补体依赖性细胞毒性 (CDC) 和/或抗体依赖性细胞吞噬作用 (ADCP) 导致清除 [报价单10–16].目前对于大量输血的同种异体免疫患者,目前的主要管理策略是广泛匹配血小板输注产品,以防止 PR 和随后的更差临床结局 [报价单7–9].有趣的是,并非所有同种异体免疫患者都会因血小板输注不匹配而发生 PR [报价单17,报价单18],提示患者之间HLA特异性IgG反应的定性特征差异。

所有 IgG 分子都含有保守的 N-位于Fc区位置297的连接聚糖,影响抗体的结构和功能。该聚糖由 N-乙酰葡糖胺(GlcNAc)和甘露糖残基,可以通过岩藻糖,平分GlcNAc和最多两个半乳糖残基拉长,两者都可以被唾液酸残基覆盖。抗体Fc糖基化变化很大,之前在感染和同种异体免疫的情况下已经描述了改变的模式,已知这些改变会影响抗体效应功能,从而影响相关免疫应答的进展[报价单19–27].例如,岩藻糖残基的缺失导致抗体与FcγRIIIa/b的结合亲和力增加,这可能导致相关效应功能增加,例如ADCC和ADCP [报价单19–22,报价单25,报价单28,报价单29].此外,半乳糖基化与补体活化特别相关[报价单21,报价单24,报价单30,报价单31].我们和其他人最近表明,半乳糖基化通过增强的六聚化增加了抗体激活经典补体途径的能力,这反过来又增加了补体沉积和CDC活性[报价单23,报价单30].唾液酸化略微增强补体活化,进一步增强[报价单21,报价单23,报价单32],而平分GlcNAc对补体活化和FcγR结合均无影响[报价单21].

之前,我们表征了在接受血小板输注的血液肿瘤患者中检测到的抗HLA I类抗体的糖基化谱[报价单33]和被诊断为 PR 的患者 [报价单20].抗HLA IgG特异性糖基化谱在患者之间差异很大。对于大多数患者,我们观察到与总IgG相比,HLA特异性IgG的Fc半乳糖基化和唾液酸化增加。此外,少数患者(35 名患者中有 2 名)也产生了岩藻糖基化水平极低的抗 HLA 抗体 [报价单33].

在同种异体免疫和 PR 的背景下,输注的血小板主要被认为是在用抗 HLA 或 -HPA 同种抗体调理后被脾脏中的单核巨噬细胞清除 [报价单8,报价单10,报价单11,报价单13,报价单34,报价单35].存在几种途径,其中吞噬细胞可以通过非调理和调理受体检测其吞噬作用靶标。非调理受体对于识别病原体相关分子模式(PAMP)和凋亡细胞至关重要,而调理受体识别用调理素靶向清除的细胞,例如IgG和补体成分。识别IgG的最重要和有效的吞噬受体是FcγRI(CD64),FcγRII(CD32)和FcγRIII(CD16)和补体受体3(CR3或CD11b / CD18),用于识别iC3b和C3d [报价单36,报价单37].脾巨噬细胞具有高表达的CR3,FcγRI,FcγRII和FcγRIII[报价单14,报价单38–41].当血小板被IgG或补体成分调理时,血小板变得容易受到脾巨噬细胞表达的吞噬受体的结合,从而导致随后的吞噬和破坏。血小板通过脾正弦的缓慢通过进一步增强了这一过程[报价单7,报价单11,报价单14].然而,补体系统受累以及血小板内在因素(如血小板凋亡和调理作用时活化)最近也被提出与 PR 中血小板存活率降低有关 [报价单12,报价单15,报价单35,报价单42–45].

有趣的是,对于抗体Fc糖基化对巨噬细胞使用不同糖基化的抗HLA同种抗体调理作用时血小板清除的影响知之甚少。特别是鉴于最近关于抗体Fc糖基化对FcγR结合和补体沉积的影响的发现,重要的是要更深入地了解抗体Fc糖基化对同种异体免疫时PR中涉及的清除机制的影响。在目前的研究中,我们研究了已知影响补体沉积和FcγR亲和力的不同Fc糖基化模式对单核细胞来源的人巨噬细胞调理化血小板吞噬的影响。使用单核细胞来源的M1巨噬细胞,因为它们具有高表达水平的FcγR和CR3, 人脾巨噬细胞也高度表达。我们发现,通过改变Fc糖基化谱增加补体沉积和/或FcγRIIIa/b亲和力并不影响人单核细胞来源的巨噬细胞对IgG调理化血小板的吞噬作用。 体外 型。

材料和方法

人类血液样本

在书面知情同意后,从匿名Sanquin献血者获得的血沉棕黄层中分离出单核细胞。血小板是从匿名健康志愿者的柠檬全血中分离出来的,并得到知情的书面同意。单核细胞和血小板不是从同一个个体获得的。所有程序均由Sanquin道德咨询委员会批准,并符合赫尔辛基宣言和荷兰法规。

重组糖工程抗HLA单克隆抗体的生产

本研究中使用的抗HLA单克隆抗体的生产和糖工程技术已被详细描述[报价单46–52].简而言之,所有抗HLA mAb可变区域的蛋白质序列用于组装编码全人IgG1和PG LA LA Fc突变体(P329 G,L234A和L235A)的pcDNA3.1表达载体,这些突变体不能结合补体和FcγR[报价单53].表达载体用于我们内部HEK Freestyle系统中重组抗体的生产。为了获得具有某些所需聚糖谱的抗体,在转染之前/期间使用化学抑制剂2-脱氧-2-氟-L-岩藻糖(2FF,碳合成物)来减少fc岩藻糖基化和5 mM D-半乳糖(Sigma Aldrich),并编码酶β-1,4半乳糖基转移酶1(B4GALT1)和β-半乳糖苷α-2,6-唾液酸转移酶1(ST6GALT1)的构建体,以增加半乳糖基化和唾液酸化。转染后6天纯化单克隆抗体,并进行液相色谱-质谱的IgG Fc糖基化分析[报价单46,报价单47,报价单54].

表面等离子体共振 (SPR)

如前所述,通过IBIS M×96(IBIS技术)上的表面等离子体共振(SPR)评估抗体与人FcγR类别的结合[报价单55,报价单56].使用连续流动微量观察仪(Wasatch Microfluidics)将所有C端生物素化的hFcγR点到单个SensEye G-链霉亲和素传感器(Ssens)上,该传感器允许同时测量每种抗体与所有hFcγR的结合亲和力。生物素化的hFcγR以三倍稀释度点样,hFcγRIIa-H131,hFcγRIIIa-F158,hFcγRIIIb-NA1和hFcγRIIIb-NA2从30 nM到1 nM,hFcγRIIa-R131和hFcγRIIb的稀释范围为10 nM至0.3 nM,在补充有0.075%吐温-80(VWR,M126-100 ml),pH 7.4的PBS中,hFcγRIIIa-V158的范围为100 nM至3 nM。每个样品后用10nM Gly-HCl,pH 2.0进行再生。解离常数(KD)使用Rmax = 500的平衡拟合计算。 所有结合数据的分析和计算均使用洗涤器软件版本2(生物软件)和Excel完成。

单核细胞分离和分化为单核细胞来源的巨噬细胞

使用CD14+磁性微珠分离(Miltenyi Biotec)从血沉棕黄层衍生的PBMC中分离单核细胞,随后冷冻直至如前所述进一步使用[报价单44,报价单57].采用流式细胞术测定单核细胞纯度,为>90%。单核细胞分化为单核细胞来源的巨噬细胞,如所述[报价单58].简而言之,单核细胞在第0天解冻并在24孔培养板(0.25×106 每孔单核细胞)在 IMDM 1640(龙沙)中存在 10 ng/mL 粒细胞-巨噬细胞集落刺激因子(GM-CSF、CellGenix),含有 10% 胎牛血清 (Bodinco) 100 U/mL 青霉素和 100 U/mL 链霉素(均为 Gibco),CO 为 5% CO2 37°C. 细胞共培养9天,培养第3天加入新鲜培养基和GM-CSF。

血小板分离、标记和调理

通过离心枸橼酸全血,从富血小板血浆(PRP)中分离出具有已知HLA分型的健康志愿者的血小板 g 20分钟,使用前面描述的方法进行优化以避免血小板活化[报价单12,报价单16].此后,10 体积% ACD(酸性柠檬酸盐葡萄糖,85 mM Na3-柠檬酸盐·2 H2O, 71 mM柠檬酸·H2O和111mM D-葡萄糖)加入。PRP离心(850 g 8分钟),并用洗涤缓冲液(WB;36mM柠檬酸·H2O,103 mM NaCl,5 mM KCl,5 mM EDTA,5.6 mM D-葡萄糖,pH 6.5)。将血小板浓度设置为6×108 PBS中的细胞/ mL,并在室温下与3.75μM PKH26(西格玛奥尔德里奇)在辊组上孵育20分钟。加入10体积%FCS终止标记过程,用WB洗涤标记的血小板并重悬于PBS + 0.5%BSA中。5 × 106 将血小板与等体积的重组抗HLA抗体一起孵育,并在室温下混合补体足够的人血清30分钟。对于某些条件,将血清在56°C下预孵育30分钟以灭活补体。用PBS + 0.5%BSA + 5 mM EDTA洗涤血小板3次,并重悬于巨噬细胞培养基中。补体沉积(C3b)通过用抗补体C3b/iC3b-APC抗体克隆染色一小部分血小板来评估补体沉积(C3b):3E7/C3b(1/250,生物传奇)

巨噬细胞对调理血小板的吞噬作用

对于吞噬作用测定,将调理的血小板在37°C下与同种异体巨噬细胞以1:40巨噬细胞:血小板比例孵育30分钟。对于某些条件,将巨噬细胞在室温下与10μg/ mL FcγR封闭抗体(抗CD16,抗CD32和/或抗CD64)和同种型对照预孵育30分钟。抗CD64(克隆10.1,阻断FcγRI)作为f(ab’)2片段从Ancell公司订购,而抗CD32(克隆AT10,阻断FcγRIIa/b/c),抗CD16(克隆3G8,阻断FcγRIIIa/b)和同种型(抗生物素)被克隆并生产为hIgG1 N297A P329 G,L234A和L235A,使它们无法结合C1q和FcγRs [报价单53].此后,用PBS洗涤细胞并使用130mMli多卡因(Sigma Aldrich)和10mM EDTA(默克)收获。收获后,将巨噬细胞保持在冰上,并用冰冷的PBS + 0.5%牛血清白蛋白(BSA,Sigma Aldrich)+ 2 mM EDTA(默克)洗涤,随后用冰冷的PBS洗涤。收获后,将细胞用3.7%多聚甲醛(Sigma Aldrich)在PBS中固定在室温下15分钟。接下来,用PBS + 0.5%BSA洗涤细胞,并使用APC标记的抗HLA-DR(克隆L243,BD Biosciences)和BV421标记的抗CD42a(克隆ALMA.16,BD Biosciences)染色20分钟在PBS + 0.5%BSA的室温下。用PBS + 0.5%BSA洗涤细胞,并使用BD LSR II流式细胞仪和成像流式细胞术(ImageStreamX Mark II成像流式细胞术,默克密理博)进行分析。使用Flowjo v 10.8.1分析流式细胞术数据; 基于FSC / SSC,单细胞和HLA-DR+对细胞进行门控,之后对PKH26标记的血小板和抗CD42a-BV421(PKH26+ CD42a-:吞噬;PKH+ CD42a+:结合的血小板;补充图S3A)。使用IDEAS v6软件分析成像流式细胞术数据,涉及对门细胞的纵横比强度/面积Ch01进行门控,随后对焦点细胞(梯度RMS Ch01)和HLA-DR+细胞进行门控巨噬细胞,之后对PKH26标记的血小板和抗CD42a-BV421阳性细胞进行门控(补充图S3B)。 使用IDEAS v6软件分析成像流式细胞术数据,涉及对门细胞的纵横比强度/面积Ch01进行门控,随后对焦点细胞(梯度RMS Ch01)和HLA-DR+细胞进行门控巨噬细胞,之后对PKH26标记的血小板和抗CD42a-BV421阳性细胞进行门控(补充图S3B)。 使用IDEAS v6软件分析成像流式细胞术数据,涉及对门细胞的纵横比强度/面积Ch01进行门控,随后对焦点细胞(梯度RMS Ch01)和HLA-DR+细胞进行门控巨噬细胞,之后对PKH26标记的血小板和抗CD42a-BV421阳性细胞进行门控(补充图S3B)。

统计学

统计分析在Windows版GraphPad Prism 8.02(263)中执行。使用普通单因素方差分析和邓尼特多重比较检验分析条形图。重要性水平设定为 p ≤ .05.*、**、*** 和 **** 表示统计显著性 p 分别为<.05、≤.01、≤.001和≤.0001。

结果

为了确定抗HLA同种抗体的Fc糖基化对补体和/或FcγR介导的血小板吞噬作用的影响,建立了监测人单核细胞来源巨噬细胞吞噬血小板吞噬作用的系统。糖基化谱改变的抗HLA单克隆抗体(mAb)(补充图S1A-C)如下所述[报价单46,报价单47]并进行基于液相色谱-质谱的IgG Fc糖基化分析,以确认预期的糖基化曲线(补充图S1D)。

将血小板与未修饰和糖工程化的抗HLA hIgG1 mAb(SN230G6、SN607D8和W6/32)在补体充足血清存在下孵育,从而实现抗体和补体调理。只有SN230G6和SN607D8抗体的组合导致强烈的C3b沉积,尽管泛HLA I类识别W6/32(补充图S1B)自行引起补体沉积(补充图S1E),与我们之前的观察结果一致[报价单47].半乳糖基化和唾液酸化升高的抗体显著增强了补体沉积。mAb的岩藻糖基化对补体沉积没有影响(补充图S1E)。PG LALA Fc突变体,不能结合C1q和FcγR[报价单53],也没有热灭活血清(HI血清)导致C3b沉积(补充图S1F)。通过SPR阵列评估了这些糖工程抗体与人FcγR的结合,证实了FcγRIIIa/b的亲和力增加,而FcγRIIa/b的亲和力差异没有观察到(补充图S2)。

调理的PKH26标记的血小板与单核细胞来源的M1样巨噬细胞(图 1A).这些分化的巨噬细胞表达所有类别的FcγR(FcγRI(CD64),FcγRII(CD32),FcγRIII(CD16))以及CR3(CD11b / CD18)(图1B),所有参与吞噬作用的关键受体[报价单8,报价单11,报价单36,报价单37,报价单59].使用成像和常规流式细胞术测定血小板的内化(门控策略分别在补充图S3A和3B中描述)。血小板特异性标志物CD42a用于检测巨噬细胞外部的血小板(图1C).大多数血小板阳性(PKH+)巨噬细胞是CD42a-。此外,使用成像流式细胞术显示,大多数PKH+ CD42a +事件由同时具有吞噬作用(PKH + CD42a-)和结合(PKH+ CD42a +)血小板的巨噬细胞组成,表明总PKH+区室与血小板吞噬的定量相关(图 1D-E 和补充图S3A,下面板)。因此,通过常规流式细胞术分析PKH+巨噬细胞的总区室以评估血小板吞噬作用,因为排除PKH + CD42a +事件会导致吞噬效率的低估。

 

 




 

数字 1 的 2

图1. A) 监测调理化血小板吞噬作用的实验装置的示意图概述:用GM-CSF将CD14 +单核细胞培养9天,以分化为单核细胞来源的巨噬细胞(MQ M1)。此后,巨噬细胞在有和没有FcγR阻断剂的情况下预先孵育。来自HLA-A2+供体的新鲜分离的血小板用PKH26标记,并在补体充足或热灭活(HI)血清存在下与未修饰和糖工程化的抗HLA单克隆抗体预孵育,用于抗体和补体调理。将巨噬细胞和血小板洗涤并在37°C下共孵育30分钟,并通过流式细胞术和Imagestream进行分析 B) 通过流式细胞术分析的单核细胞来源巨噬细胞表面补体受体3(Cd11b / cd18)和FcγR(FcγRI,FcγRII,FcγRIII)的表达水平。 C-E) 血小板的内化是用 C) 常规和 D-E) 成像流式细胞术。抗CD42a-BV421染色与PKH26联合用于鉴定附着在细胞外部的血小板。显示了通过成像流式细胞术获得的指示象限的代表性图像。

Ancell抗CD64(FcRI)F(ab')2的作用

与未调理的血小板(图 2A,B).以抗体浓度依赖性方式观察吞噬作用,吞噬细胞MQ的最大百分比为1μg/mL。尽管半乳糖基化和唾液酸化水平升高的糖工程mAb显著增强了血小板上的补体沉积(补充图S1E),但这些并没有导致更高水平的后续吞噬作用(图2C).此外,用非糖基化IgG调理,这增加了对FcγRIII的亲和力([报价单21]和补充图S2),与未修饰的抗体(图2C).此外,将血小板与单独的未修饰抗HLA单克隆抗体SN230G6或SN607D8孵育可增强吞噬作用(补充图S4A-B),并且不受抗体Fc聚糖修饰的影响(补充图S4C-D)。与SN230G6 + SN607D8组合类似,与未调理的血小板相比,将血小板与泛HLA I类抗体W6/32孵育导致吞噬作用显着增加(图 2D,E).以抗体浓度依赖性方式观察吞噬作用,不受任何抗体聚糖修饰(图 2E,F).这些结果表明,观察到的吞噬作用主要不是通过补体受体或FcγRIIIa/b介导的。

图2. 单核细胞来源的巨噬细胞吞噬补体和抗体调理血小板 A) 绝对和 B) 在补体充足血清存在下,与不同浓度的未修饰的hIgg1抗HLA单克隆抗体(mAb)SN230G6 + SN607D8一起孵育的血小板吞噬相对水平 C) 在补体充足血清存在下,用未修饰和糖工程的hIgg1 SN230G6 + SN607D8 mAb预孵育的血小板之间的吞噬作用差异。 D) 绝对和 E) 在补体充足血清存在下,与不同浓度的未修饰的泛抗 HLA I 类 hIgg1 mAb W6/32 预孵育的血小板吞噬相对水平 F) 在补体充足血清存在下,用未修饰和糖工程hIgg1 W6 / 32 mAb预孵育的血小板之间的吞噬作用差异。 G-H) 在补体充足或热灭活 (HI) 血清存在下,用 1 μg/ml 未修饰或 PG LA LA Fc 突变抗 HLA mAb(SN230G6+SN607D8 或 W6/32)预孵育的血小板的相对吞噬水平 A-H) 吞噬作用水平(%)定义为PKH26+巨噬细胞部分(Q1 + Q2)的百分比。数据表示在2-4个独立实验中使用的2-5个不同单核细胞供体的2个技术重复的平均值和SD,对于每个独立实验,还使用了不同的血小板供体。数据点的颜色表示不同的单核细胞供体。对于标准化,如图所示,用1μg/ ml未修饰的抗HLAmAb孵育的血小板的吞噬作用水平设置为1。采用Dunnet多重比较检验的普通单因素方差分析进行统计分析。*p ≤ .05, ****p ≤ .0001 和 ns = 不显著 .

Ancell抗CD64(FcRI)F(ab')2的作用

与此一致,用HI血清调理的血小板不会导致巨噬细胞吞噬作用减弱(图2G).然而,用PG LA LA Fc突变体进行血小板调理作用显着消除了吞噬作用(图2G),提示吞噬作用依赖于 FcγR,但与补体无关。在W6/32中观察到相同的趋势,其吞噬作用似乎不受HI血清(图2H).然而,必须注意的是,在补体充足血清存在的情况下,将血小板与未修饰的W6/32抗体孵育仅会导致低C3b沉积(补充图S1E)。

为了初步评估哪种FcγR可能参与抗HLA调理血小板的吞噬作用,使用了FcγR阻断抗体。虽然阻断FcγRII或FcγRIII导致吞噬作用的减少可以忽略不计,但单独阻断FcγRI或与FcγRII和FcγRIII联合阻断,导致单核细胞衍生巨噬细胞对调理血小板的吞噬作用降低(补充图S4E-F)。我们假设在阻断FcγRI时,对于用低岩藻糖化抗体调理的血小板,对FcγRIII的亲和力增加可能会变得明显。引人注目的是,FcγRI阻断抗体的存在似乎不会影响低岩藻糖基化W6/32抗体的吞噬作用(补充图S4G)。

 



Ancell抗人Fc受体抗体,Fab,F(ab’)2,偶联物



抗CD16 (FcgRIII)

抗CD32 (FcgRII)

抗CD64 (FcgRI)


Ancell 著名的专注做人种属的流试抗体提供商。


 

上海金畔生物科技有限公司

  1. 国内试剂耗材经销代理。

  2. 国外试剂的订购。可提供欧美实验室品牌的采购方案。

  3. 提供加急物流处理,进口货物,最快交期1-2周。

  4. 进出口货物代理服务。

  5. 公司代理众多有名生命科学领域的研究试剂、仪器和实验室消耗品品牌:CELL DATA,Alamanda Polymers, cstti,Click Chemistry tools,Nanoprobes,Ancell,NANOCS,Ambeed, Inc,SPEED BioSystems, LLC,Tulip Biolabs, Inc,Torrey Pines Biolabs,magsphere ,FabGennix International ,paratechs,Medicago,Oraflow,CWE,Wasatch Photonics, alphananote, It4ip, proteoform, Caprico等,重点合作品牌 Lee Biosolutions,chematech,Nanopartz,denovix,Atto tec,macrocyclics等。

  6. 质量保证,所有产品都提供售后服务。付款方式灵活。公司坚持“一站式”服务模式,为客户全面解决实验、生产、开发需求。公司整合国际与国内资源,加强网络建设,提高公司内部运作效率,为客户提供方便、快捷的服务。

  7. 公司突出创新思维,提高工作效能,减低运作成本,为客户提供优惠的价格。