Hampton AlumaSeal™ II Sealing Film and Applicator

Hampton AlumaSeal™ II Sealing Film and Applicator

Applications
Sealing film used to reseal HT format screen kits in polypropylene blocks and plates
Features
Excellent seal
Film conforms to raised chimney wells
Easily pierceable with single or multichannel pipettors and robotic probes
Heat & cold resistant, recommended for temperatures from -80 °C to +120 °C
Certified DNase-, RNase-, and nucleic-acid-free
Less evaporation than clear films
Excellent barrier properties, virtually no reagent evaporation or drying
 Description
A 38 µm soft non-permeable aluminum foil sealing film with strong medical-grade adhesive, AlumaSeal II sealing films eliminate the need for heat-sealing devices or mats during the resealing of reagents in polypropylene deep well blocks. Each sealing film measures 82.6 x 142.9 mm and offers sufficient sealing area for 96 deep well blocks. Length between the perforations with end tabs removed is 125.4 mm. Compared to other aluminum foils, AlumaSeal II has less tendency to roll back on itself when removing the backing paper and it conforms well to the plate during application.AlumaSeal II is a soft, pierceable adhesive film designed for the convenient and rapid sealing of polypropylene deep well blocks. A multiple split backing with two end tabs allows for easy, accurate positioning and secure sealing. The use of an adhesive sealing film minimizes evaporation and helps to prevent well-to-well cross contamination in reagent blocks. AlumaSeal II films are easily pierced by pipettte tips or robotic probes or piercing tools for direct reagent recovery without significant gumming by adhesive.
AlumaSeal™ II Sealing Film and Applicator
AlumaSeal™ II Sealing Film and Applicator

CAT NO NAME DESCRIPTION
HR8-069 AlumaSeal II Sealing Film 100 pack
HR4-413 Film Sealing Paddle 5 pack

Hampton 水晶透明密封带Crystal Clear Sealing Tape

Hampton 水晶透明密封带Crystal Clear Sealing Tape
Crystal Clear Sealing Tape
3 inch, 1.88 inch, 1.88 inch with dispenser, 0.75 inch with dispenser (left to right)
Crystal Clear Sealing Tape
0.75 inch Crystal Clear Sealing Tape
Applications  应用
Sealing tape used to seal sitting drop crystallization experiments
Description
These optically clear tapes are compatible with protein crystallization reagents. The polypropylene Crystal Clear Sealing Tapes use acrylic solvent based adhesives which are compatible with aqueous crystallization reagents.
Catalog number HR3-511 is a 1.88 inch (48 mm) wide, 3 mil tape on a 43.7 yard (40 M) roll with a 1.5 inch core and is supplied with a green dispenser / cutter.Catalog number HR4-511 is a 1.88 inch wide, 3 mil tape on a 60 yard roll with a 3 inch core and no dispenser / cutter.Two strips of the HR3-511 or HR4-511 will seal a Corning, Cryschem, CrystalClear Strip, Greiner, Intelliplate, Linbro, Swissci (MRC), VDX and VDXm plate.Catalog number HR4-506 is a 3 inch wide, 3 mil tape on a 54.86 yard roll with a 3 inch core and no dispenser / cutter.One strip of the HR4-506 will seal a Corning, Cryschem M, CrystalClear Strip, Greiner, Intelliplate, Swissci (MRC) and VDXm plate.Crystal Clear Mini Sealing Tape HR4-508 is a 0.75 inch (19 mm) wide, 3 mil tape on a 650 inch (16.5 M) roll and is supplied with a clear dispenser / cutter. The tape is useful for resealing or patching wells after mounting crystals. The tape is also wide enough to seal a single row of a Cryschem S or Cryschem M plate.See chart for tape and plate compatibility.

Hampton热销产品

Hampton Research是 美国最权威的蛋白结晶试剂盒提供商,产品齐全,性价比高。
在生命科学领域,上海金畔生物为业界提供了丰富的实验室和生物医药生产研发的产品。庆祝上海金畔生物正式成为Hampton的签约代理商,在这里要感谢广大客户多年来对上海金畔生物科技有限公司的支持和厚爱,我们将一如既往的为广大客户带来Hampton高品质的产品和服务,欢迎广大新老客户来电咨询。‘
美国Hampton Research公司位于加利福尼亚州,是一家专门从事蛋白质晶体研究的生产商。该公司向全球科研人员提供全面的晶体研究试剂和相关实验耗材,同时提供晶体设计和合成方面的定制服务。Hampton Research公司以其先进的生物大分子结晶技术和广泛实用的产品线,不仅为全世界晶体研究人员的工作带来了便捷,而且也受益于科研人员的回馈不断发展自己,目前已成为晶体研究领域最受信赖的品牌之一。
Hampton research主要产品:
Crystallization Screens 用于筛选和优化蛋白质/多肽/核酸结晶的一系列经验证的高精配方型溶液
Optimize Reagents 结晶级别盐类,聚合物,有机溶液或缓冲液
Crystallization Plates, Hardware & Accessories 结晶板(悬滴法和坐滴法,微量透析,微配液,自由界面扩散,凝胶以及无容器悬浮法)及其他配件
Cryocrystallography 低温晶体学耗材如 Crystalcap system,cryoloops
Goniometer Heads&Supplies 测角器头和配件
Protein Crystallization Standards 结晶级别标准蛋白
Custom Shop Crystallization Reagents 定制试剂盒和结晶溶液内的单一组分
StockOptions Kits 内含盐类,缓冲液和冷冻液的简便型试剂盒
Tools,Seeding&Resin 结晶用探针,结晶笔,seeding法结晶工具
Capillary Mounts & Supplies 毛细管,玻璃纤维, 蜡,黏合剂和密封剂
Hampton热销产品

  • StockOptions pH Buffer Kit HR2-241
    Crystallization grade buffer stocks for crystal screening, optimization, & production
    Crystal Screen Cryo HR2-122
    Primary screen with cryo for proteins, soluble peptides, nucleic acids, & water soluble small molecules
  • Natrix HR2-116
    Primary biased sparse matrix crystallization screen for nucleic acids & protein/nucleic acid complexes
  • MembFac HR2-114
    Primary sparse matrix crystallization screen for membrane proteins and samples with limited solubility
  • SaltRx HR2-136
    Primary or secondary, salt and pH matrix crystallization screen for biological macromolecules
  • Grid Screens HR2-248
    Primary or secondary, salt, polymer, organic and pH grid crystallization screen for biological macromolecules
  • PEG/Ion HR2-126
    Primary or secondary, polymer, salt and pH matrix crystallization screen for biological macromolecules
  • PCT™ Pre-Crystallization Test HR2-140
    Determine the appropriate sample concentration for crystallization screening
  • Index HR2-144
    Primary, diverse reagent system crystallization screen for proteins, complexes, peptides, nucleic acids, & water soluble small molecules
  • Crystal Screen HR2-110
    Primary screen for proteins, soluble peptides, nucleic acids, & water soluble small molecules;Sparse matrix additive screen
  • PEGRx HR2-082
    Primary and secondary, polymer and pH based crystallization screen for biological macromolecules
  • Additive Screen HR2-428
    Manipulate sample-sample & sample-solvent interactions to improve crystals or alter sample solubility
  • Detergent Screen HR2-408
    Prevent and manipulate non-specific aggregation due to hydrophobic interactions
  • CryoPro HR2-073
    Water soluble cryoprotectant reagent set designed for the cryopreservation of biological macromolecular crystals
  • StockOptions Salt HR2-245
    Crystallization grade salt reagent stock solutions for screen formulation and optimization
  • Siliconized Glass Cover Slides HR3-217
    Hanging, sitting or sandwich drop crystallization
  • Intelli-Plate 96 HR3-185
    蛋白结晶座滴板
  • CrystalCap HR4-733
  • CryoLoop HR4-623

    • CryoTong™ – Long HR5-104
      Crystal transfer under cryo temperature
    • CrystalWand™ Magnetic HR4-729
      CrystalCap Magnetic & CrystalCap Copper Magnetic handling tool
    • Vial Clamp™ – Straight HR4-670
      Vial support and manipulation
    • CrystalCap™ Holder HR4-707
    • CryoCane HR4-709
      Organized storage of CrystalCaps

Hampton蛋白结晶柱 CrystalCap™ SPINE HT

Hampton CrystalCap™ SPINE HT

Applications

Cryocrystallography   低温结晶学
Features

SPINE style sample mount for cryocrystallography
CrystalCap SPINE HT attaches magnetically to CrystalCap Vial and Magnetic Goniometer Base     CrystalCap SPINE HT磁性地附着到CrystalCap小瓶和磁测角仪底座
Hollowed out design compatible with SPINE style grippers, auto mounters and sample handlers
2D alphanumeric coding for sample tracking & management
Bar coded, color coded, alphanumeric, magnetic cap
Color coded CryoLoop size
 Description
The CrystalCap SPINE HT is a magnetic sample mount (also known as a cap, pin or goniometer base) designed for cryocrystallography systems that accept SPINE style caps. The CrystalCap SPINE HT attaches to a magnetic CrystalCap SPINE Vial and magnetic goniometer base. The tip of the CrystalCap SPINE HT accepts a Mounted CryoLoop™ or MicroTube™ fitted with a CryoLoop™.The CrystalCap SPINE Vial is a 1.8 ml cryo vial featuring two small vents and is compatible with the CrystalCap SPINE HT. A ring magnet is molded into the open end of the vial so that when the cap is positioned in the vial, the ring magnet holds the cap on the vial during cryogenic storage. The CrystalCap SPINE Vial features chamfered edges for enhanced cap positioning as well as a magnetic alloy bottom for stability. The HR8-114 CrystalCap SPINE Vial does have a magnet on the bottom of the vial.The hollowed out design of the CrystalCap SPINE HT is compatible with SPINE style grippers, auto mounters and sample handlers.The CrystalCap SPINE HT features a two dimensional (2D) alphanumeric 16 x 16 data matrix code on the underside of the cap. Each cap is also color coded for CryoLoop size.
CrystalCap SPINE without 2D code/printing (HR8-094) is the CrystalCap SPINE HT cap only, without 2D code, without color code, without white white background on bottom of cap and no alphanumeric side labeling; cap only, without Mounted CryoLoop.
Note: Caps with Mounted CryoLoops are sold without vials. Vials available separately.
Color Coded Cap…………CryoLoop Size
Red…………………………….0.025-0.05 mm
Green…………………………….0.05-0.1 mm
Yellow……………………………..0.1-0.2 mm
Blue………………………………..0.2-0.3 mm
Blue/Red………………………….0.3-0.4 mm
Green/Red………………………..0.4-0.5 mm
Yellow/Red………………………..0.5-0.7 mm
Yellow/Green……………………..0.7-1.0 mm
Compatible with the following Synchrotron Radiation Beamlines
North & South America
• The Advanced Light Source, Berkeley, California ALS 4.2.2, ALS 11.3.1, ALS 12.2.2, ALS 12.3.2
• The Advanced Photon Source, Argonne, Illinois APS 14-BM-C BioCARS, APS 14-ID-B BioCARS, APS 21-ID-D LS-CAT, APS 21-ID-E LS-CAT, APS 21-ID-F LS-CAT, APS 21-ID-G LS-CAT, APS 23-ID-B GA/CA, APS 23-ID-D GA/CA, APS 24-ID-E NE-CAT, APS 31-ID LR-CAT
• Center for Advanced Microstructures and Devices, Baton Rouge, Louisiana CAMD GCPCC
• Cornell High Energy, Synchrotron Source, Ithaca, New York CHESS A1, CHESS F1
• The Brazilian Synchrotron Light Laboratory, Sao Paulo, Brazil LNLS D03B-MX1, LNLS W01B-MX2
• National Synchrotron Light Source, Upton, New York NSLS X3B, NSLS X4A, NSLS X4C, NSLS X6A, NSLS X12B, NSLS X12C, NSLS X25, NSLS X26C, NSLS X29
Europe
• Cerdanyola del Vallés, Spain ALBA XALOC
• Berlin Electron Storage Ring Company for Synchrotron Radiation, Berlin, Germany BESSY 14.1, BESSY 14.2, BESSY 14.3
• Diamond Light Source, Didcot, Oxfordshire, England DIAMOND I02, DIAMOND I03, DIAMOND I04, DIAMOND I04.1, DIAMOND I24
• Elettra Sincrotrone Trieste, Trieste, Italy ELETTRA 5.2R
• European Molecular Biology Laboratory, Hamburg, Germany EMBL/DESY P13, EMBL/DESY P14
• European Synchrotron Radiation Facility, Grenoble, France ESRF BM14, ESRF BM30A, ID30A-1/MASSIF-1,
ID30A-3/MASSIF-3, ESRF ID23-1, ESRF ID23-2, ESRF ID29
• Max-Lab, Lund University, Sweden MAX II I911-2, MAX II I911-3
• Swiss Light Source at Paul Scherer Institut, Switzerland SLS X06DA-PXIII, SLS X06SA-PXI, SLS X10SA-PXII
• SOLEIL, Saint-Aubin, France SOLEIL PROXIMA1, SOLEIL PROXIMA2
Asia & Australia
• Shanghai Synchrotron Radiation Facility, Shanghai, China SSRF BL17U1
• Beijing Synchrotron Radiation Facility, Beijing, China BSRF 1W2B, BSRF 3W1A
• Super Photon ring-8 GeV, Japan SPRING-8 BL12B2, SPRING-8 BL24XU, SPRING-8 BL26B1, SPRING-8 BL26B2, SPRING-8 BL32B2, SPRING-8 BL32XU, SPRING-8 BL38B1, SPRING-8 BL41XU, SPRING-8 BL44B2, SPRING-8 BL44XU
CrystalCap™ SPINE HT
CrystalCap SPINE HT
CrystalCap™ SPINE HT
CrystalCap SPINE HT
CrystalCap™ SPINE HT
CrystalCap SPINE HT

CAT NO NAME DESCRIPTION
HR8-118 CrystalCap SPINE HT 0.025-0.05 mm CryoLoop, without Vial – 30 pack
HR8-120 CrystalCap SPINE HT 0.05-0.1 mm CryoLoop, without Vial – 30 pack
HR8-122 CrystalCap SPINE HT 0.1-0.2 mm CryoLoop, without Vial – 30 pack
HR8-124 CrystalCap SPINE HT 0.2-0.3 mm CryoLoop, without Vial – 30 pack
HR8-126 CrystalCap SPINE HT 0.3-0.4 mm CryoLoop, without Vial – 30 pack
HR8-128 CrystalCap SPINE HT 0.4-0.5 mm CryoLoop, without Vial – 30 pack
HR8-130 CrystalCap SPINE HT 0.5-0.7mm CryoLoop, without Vial – 30 pack
HR8-132 CrystalCap SPINE HT 0.7-1.0 mm CryoLoop, without Vial – 30 pack
HR8-112 CrystalCap SPINE HT Cap only – 30 pack
HR8-116 CrystalCap SPINE HT Cap/Vial Cap/Vial only – 30 pack
HR8-094 CrystalCap SPINE without 2D code/printing Cap only – 30 pack
HR8-114 CrystalCap SPINE Vial Vial only – 30 pack

Hampton 48孔坐滴蛋白结晶板 48-Well Crystallization Plate

Hampton 48孔坐滴蛋白结晶板 48-Well Crystallization Plate
Applications

Sitting drop crystallization
Features

One drop per reservoir
SBS format
48 well plate
9 mm standard distance between wells
Drop volume: Up to 10 µl
Reservoir volume: 50 to 200 µl
Micro-numbering alongside drop volumes
Rigid plate structure
Wide partition walls between wells improve sealing
Developed in conjunction with the MRC Laboratory of Molecular Biology in Cambridge, United Kingdom
UV compatible (UVP)
Description
MRC Maxi 48-Well Crystallization Plate for Automated Optimization
The MRC Maxi optimization plate is a breakthrough for macromolecular crystallization presented in a 48 well format. Offering easy to automate crystallization optimization with large sitting-drops, the new MRC Maxi Crystallization plate is the perfect solution. Manufactured by Swissci AG, the plate offers an SBS format while providing 48 wells. MRC Maxi is intended for large drops and is compatible both with standard robotic systems as well as manual pipetting.
The plate was developed at the MRC Laboratory of Molecular Biology (Cambridge, UK) in collaboration with Jan Löwe and Fabrice Gorrec. It is a result of many years of experience in successful robotic high-throughput crystallization and complements the original MRC crystallization plate, which is intended for smaller drop volumes and higher throughput during screening.
Drop volumes of up to 10 µl are possible. The 9 mm standard distance between wells is preserved, enabling the use of multi-channel manual pipettes and robotic liquid handlers, making MRC Maxi one of the most automation-friendly optimization plates on the market.
MRC Maxi is covered by global intellectual property and design registration as are the Swissci AG MRC 2 lens 96 well plates. Several breakthrough features of the original MRC plate have been maintained. Wells are labeled individually. Drops are raised for easy access during crystal retrieval. MRC Maxi uses the same proprietary polymer specially selected for the purpose of UV light visualization and the material used keeps through-plastic evaporation to a minimum. Well shapes are spherical but shallow.
The MRC Maxi Crystallization plate offers unique properties that make it the ideal choice for microliter-sized optimization experiments and is made from UV compatible UVP.
The advantages of the MRC Maxi Crystallization plate – in brief
Easy Crystal Retrieval
Raised wide wells make the crystal mounting especially easy.
Easy Viewing
The wells are wide conical.
Each well has a micro lens for perfect illumination.
Micro numbering readable under the microscope for each well.
The optically superior polymer (UVP) is UV transmissible.
Better Sealing
Wide partition walls between the wells give plenty of area for good sealing with tape.
Very Rigid, Automation-Friendly Plate Design
The UVP polymer reduces through-plastic evaporation to a minimum.
SBS Standard
The plates are designed to the SBS standard and are compatible with all common holders.
9 mm distance from well-to-well within columns, 18 mm distance within rows.
Unique Polymer (UVP)
Ultra-low sample binding.
No static charging.
Recommended Volumes
Volumes validated for MRC Maxi are up to 10 µl of sample drop and 200 µl of the crystallization reagent.
CAT NO NAME DESCRIPTION
HR3-179 MRC Maxi 48-Well Crystallization Plate 10 plate case
HR3-180 MRC Maxi 48-Well Crystallization Plate 40 plate case

Hampton CrystalEX Second Generation (Corning)

Hampton CrystalEX Second Generation (Corning)
Crystal<i>EX</i> Second Generation (Corning)
CrystalEx Plates
Applications
   Sitting drop crystallization
Features

96 well sitting drop plate
Round and conical flat bottom drop well shapes
1, 2 or 4 microliter drop wells
1, 3 or 5 drop wells per reservoir
Hydrophilicity treated or untreated
PZero or COC plate material–UV imaging compatible

Description
The second generation of Corning® 96 Well, sitting drop format plates are built to SBS specifications, making them well suited for high throughput crystallization and are fully compatible with robotic equipment. The plates are available in several different configurations with varying drop well shapes, plate materials, and number of drop wells per reagent well. The basic plate design is one reagent well flanked by one or three drop wells, with SBS standard spacing between the centers of adjacent well clusters. One may choose a plate with small (1 µl), medium (2 µl), or large (4 µl) drop well volumes. The choice of round or conical flat well shapes are available. The PZero polymer provides for zero background polarization and is non-birefringent. PZero plates are not treated. The COC polymer offers high chemical resistance. Both types of plastic feature improved transparency. The reservoir numbers are embossed on each individual well for easy identification. Drop well locations conform to SBS standards for robotic handling. The low-volume reagent well saves on reagent costs. The plates can be sealed using Crystal Clear Sealing Film (HR3-609), 3 inch wide Crystal Clear Sealing Tape (HR4-506) or ClearSeal Film™ (HR4-521).
Corning has discontinued 3557 – special pricing and limited inventory available for this item only.

CAT NO NAME DESCRIPTION
HR8-135 Corning 3556 4µl round drop well, 1 drop well, COC, untreated – 10 plate case
HR8-134 Corning 3556 4 µl  round drop well, 1 drop well, COC, untreated – 40 plate case
HR8-137 Corning 3551 4 µl conical flat drop well, 1 drop well, COC, treated – 10 plate case
HR8-136 Corning 3551 4µl conical flat drop well, 1 drop well, COC, treated – 40 plate case
HR8-139 Corning 3552 2 µl round drop well, 3 drop well, COC, untreated – 10 plate case
HR8-138 Corning 3552 2µl  round drop well, 3 drop well, COC, untreated – 40 plate case
HR8-141 Corning 3553 2 µl conical flat drop well, 3 drop well, COC, untreated – 10 plate case
HR8-140 Corning 3553 2 µl conical flat drop well, 3 drop well, COC, untreated – 40 plate case
HR8-147 Corning 3550 1µll conical flat drop well, 3 drop well, COC, untreated – 10 plate case
HR8-146 Corning 3550 1µl conical flat drop well, 3 drop well, COC, untreated – 40 plate case
HR8-160 Corning 3557 1 µl conical flat drop well, 5 drop well, PZero – 10 plate case
HR8-158 Corning 3557 1 µl conical flat dro p well, 5 drop well, PZero – 40 plate case

Hampton AlumaSeal™ II Sealing Film and Applicator

Hampton AlumaSeal™ II Sealing Film and Applicator

Applications
Sealing film used to reseal HT format screen kits in polypropylene blocks and plates
Features
Excellent seal
Film conforms to raised chimney wells
Easily pierceable with single or multichannel pipettors and robotic probes
Heat & cold resistant, recommended for temperatures from -80 °C to +120 °C
Certified DNase-, RNase-, and nucleic-acid-free
Less evaporation than clear films
Excellent barrier properties, virtually no reagent evaporation or drying
 Description
A 38 µm soft non-permeable aluminum foil sealing film with strong medical-grade adhesive, AlumaSeal II sealing films eliminate the need for heat-sealing devices or mats during the resealing of reagents in polypropylene deep well blocks. Each sealing film measures 82.6 x 142.9 mm and offers sufficient sealing area for 96 deep well blocks. Length between the perforations with end tabs removed is 125.4 mm. Compared to other aluminum foils, AlumaSeal II has less tendency to roll back on itself when removing the backing paper and it conforms well to the plate during application.AlumaSeal II is a soft, pierceable adhesive film designed for the convenient and rapid sealing of polypropylene deep well blocks. A multiple split backing with two end tabs allows for easy, accurate positioning and secure sealing. The use of an adhesive sealing film minimizes evaporation and helps to prevent well-to-well cross contamination in reagent blocks. AlumaSeal II films are easily pierced by pipettte tips or robotic probes or piercing tools for direct reagent recovery without significant gumming by adhesive.
AlumaSeal™ II Sealing Film and Applicator
AlumaSeal™ II Sealing Film and Applicator

CAT NO NAME DESCRIPTION
HR8-069 AlumaSeal II Sealing Film 100 pack
HR4-413 Film Sealing Paddle 5 pack

Hampton 蛋白结晶优化试剂 Optimization Screens

Hampton 蛋白结晶优化试剂 Optimization Screens

1、Solubility & Stability Screen  蛋白特异性试剂优化溶解性和稳定性
Protein specific agents for optimization of solubility & stability  
2、Solubility & Stability Screen 2   离子缓冲液
Buffer, pH & ionic strength screen for optimization of solubility & stability
3、Slice pH    PH缓冲液
pH & buffer screen for optimization of crystals or sample solubility & stability
4、Additive Screen  96孔板添加剂试剂盒
96 compound screen for optimization of crystal size & quality
5、Silver Bullets • Silver Bullets Bio
Small molecule additive screen for optimization of crystal size & quality
6、Detergent Screen
Detergent screen for optimization of crystals or sample solubility & stability
7、Ionic Liquid Screen
Ionic liquid additive screen for optimization of crystal size & quality
8、StockOptions Buffer Kits
Titrated buffer sets for optimization of crystals or sample solubility & stability
9、StockOptions Polymer
n of crystal size & quality
10、StockOptions Salt
Salt reagent kit for optimization of crystal size & qualit
11、Polymer reagent kit for optimizatioy
Proti-Ace
In situ proteolysis kit protein for crystallization screening & optimization
12、Reductive Alkylation
Reductive alkylation kit for crystallization screening & optimization
13、Silica Hydrogel Kit
pH neutral silica hydrogel matrix crystallization
14、Low Melting Agarose
Agarose gel matrix crystallization
15、CryoPro
Water soluble cryoprotectant reagent set
16、Heavy Atom Screens
Heavy atom kits for multiple isomorphous replacement
17、I3C Phasing Kit
Produce heavy atom derivative of biological macromolecules for phasing

Hampton蛋白悬滴结晶板 HDP Hanging Drop Crystallization Plate

Hampton蛋白悬滴结晶板 HDP Hanging Drop Crystallization Plate
美国Hampton Research公司位于加利福尼亚州,是一家专门从事蛋白质晶体研究的生产商。该公司向全球科研人员提供全面的晶体研究试剂和相关实验耗材,同时提供晶体设计和合成方面的定制服务。Hampton Research公司以其先进的生物大分子结晶技术和广泛实用的产品线,不仅为全世界晶体研究人员的工作带来了便捷,而且也受益于科研人员的回馈不断发展自己,目前已成为晶体研究领域最受信赖的品牌之一。
Hampton research主要产品:
Crystallization Screens 用于筛选和优化蛋白质/多肽/核酸结晶的一系列经验证的高精配方型溶液
Optimize Reagents 结晶级别盐类,聚合物,有机溶液或缓冲液
Crystallization Plates, Hardware & Accessories 结晶板(悬滴法和坐滴法,微量透析,微配液,自由界面扩散,凝胶以及无容器悬浮法)及其他配件
Cryocrystallography 低温晶体学耗材如 Crystalcap system,cryoloops
Goniometer Heads&Supplies 测角器头和配件
Protein Crystallization Standards 结晶级别标准蛋白
Custom Shop Crystallization Reagents 定制试剂盒和结晶溶液内的单一组分
StockOptions Kits 内含盐类,缓冲液和冷冻液的简便型试剂盒
Tools,Seeding&Resin 结晶用探针,结晶笔,seeding法结晶工具
Capillary Mounts & Supplies 毛细管,玻璃纤维, 蜡,黏合剂和密封剂
Hampton蛋白悬滴结晶板 HDP Hanging Drop Crystallization Plate
HDP Hanging Drop Crystallization Plate (Swissci)
HDP Hanging Drop Plate
HDP Hanging Drop Crystallization Plate (Swissci)
Single Well with Tool
HDP Hanging Drop Crystallization Plate (Swissci)
Hanging Drop Wells
Applications—Hanging drop crystallization
Features
  Made from optically superior polymer (UVP)
  Allen key novel crystal plug closure system
  Wells are micro-numbered
Description  描述:
The Swissci Hanging Drop Crystallization Plate is a breakthrough for protein crystallization in a 96-well format. For the first time individual wells can be identified and removed without any disturbance to the growing crystals inside the plate.Description
The plate has been developed by Swissci AG together with leading Crystallographers. It is the result of many years of experience in successful robotic high-throughput crystallization.
The Hanging Drop Crystallization Plate offers unique properties that make it ideal for both nanoliter crystallization screening and microliter optimization alike. Made from optically superior polymer (UVP) and with a new design of the wells, the plate allows easy crystal viewing and retrieval. The system is fully covered by design and patent protection.
The Advantages of the Hanging Drop Crystallization Plate
Easy Crystal Retrieval
Raised wide wells make the crystal mounting especially easy. Allen key system allows for smooth removal and subsequent microscopic investigation / X-ray with the novel crystal plug closure all included in the system.
Easy Viewing
The wells are wide conical and have a lens effect for perfect illumination. The micro-numbering ensures you will never loose the location under the microscope.
The optically superior polymer is UV transmissible and can be used to differentiate between salt and protein crystals.
Integral Sealing
Wide partition walls between each well provides a high surface area for very good sealing with the advanced quality sealing tape. The sealing tape is integrated into the kit so there is no need to purchase additional parts prior to starting a procedure.
Wide Range of Volumes
Typical volumes are 50 – 200 µl of reservoir and 10 nanoliter – 5 microliter drop size.
SBS Standard
The complete plate is designed to the 96-well SBS standard for all common holders.

CAT NO NAME DESCRIPTION
HR3-187 Hanging Drop Crystallization Plate (Swissci) 10 plate case

Hampton蛋白悬滴结晶板 HDP Hanging Drop Crystallization Plate 相关产品:

96 Well Hanging Drop Vapor Diffusion Plate
Hanging drop crystallization
ARI Hanging Drop Seals for 96 Well Plates
ARI Hanging Drop Seals for 96 Well Plates
CrystalQuick 96 Well Sitting Drop Plate (Greiner)
Sitting drop crystallization
Detergent Screen HT
96 detergents Deep Well block format
Glass Cover Slide Gizmo Dispenser
Cover Slide Dispenser
Greiner ComboPlate and CrystalBridge
Hanging and sitting drop crystallization
HDP Hanging Drop Crystallization Plate (Swissci)
Hanging Drop Crystallization
Linbro Plate
Hanging drop crystallization
ProCrystal
Protein Crystallization Covers for Hanging Drop Vapor Diffusion
Protein Methods
Daniel M. Bollag, Michael D. Rozycki, & Stuart J. Edelstein
Solubility & Stability Screen
Identify protein specific additives that promote solubility and stability
UVP Hanging Drop Plate Seal (Swissci)
Swissci UVP Hanging Drop Plate Seal
VDX Plate with sealant
Hanging drop crystallization
VDX Plate without sealant
Hanging drop crystallization
VDX48 Plate with sealant
Hanging drop crystallization
VDXm Plate without sealant
Hanging drop crystallization
VDXm Plate with sealant
Hanging drop crystallization

 

Hampton蛋白结晶柱 CrystalCap™ SPINE HT

Hampton CrystalCap™ SPINE HT

Applications

Cryocrystallography   低温结晶学
Features

SPINE style sample mount for cryocrystallography
CrystalCap SPINE HT attaches magnetically to CrystalCap Vial and Magnetic Goniometer Base     CrystalCap SPINE HT磁性地附着到CrystalCap小瓶和磁测角仪底座
Hollowed out design compatible with SPINE style grippers, auto mounters and sample handlers
2D alphanumeric coding for sample tracking & management
Bar coded, color coded, alphanumeric, magnetic cap
Color coded CryoLoop size
 Description
The CrystalCap SPINE HT is a magnetic sample mount (also known as a cap, pin or goniometer base) designed for cryocrystallography systems that accept SPINE style caps. The CrystalCap SPINE HT attaches to a magnetic CrystalCap SPINE Vial and magnetic goniometer base. The tip of the CrystalCap SPINE HT accepts a Mounted CryoLoop™ or MicroTube™ fitted with a CryoLoop™.The CrystalCap SPINE Vial is a 1.8 ml cryo vial featuring two small vents and is compatible with the CrystalCap SPINE HT. A ring magnet is molded into the open end of the vial so that when the cap is positioned in the vial, the ring magnet holds the cap on the vial during cryogenic storage. The CrystalCap SPINE Vial features chamfered edges for enhanced cap positioning as well as a magnetic alloy bottom for stability. The HR8-114 CrystalCap SPINE Vial does have a magnet on the bottom of the vial.The hollowed out design of the CrystalCap SPINE HT is compatible with SPINE style grippers, auto mounters and sample handlers.The CrystalCap SPINE HT features a two dimensional (2D) alphanumeric 16 x 16 data matrix code on the underside of the cap. Each cap is also color coded for CryoLoop size.
CrystalCap SPINE without 2D code/printing (HR8-094) is the CrystalCap SPINE HT cap only, without 2D code, without color code, without white white background on bottom of cap and no alphanumeric side labeling; cap only, without Mounted CryoLoop.
Note: Caps with Mounted CryoLoops are sold without vials. Vials available separately.
Color Coded Cap…………CryoLoop Size
Red…………………………….0.025-0.05 mm
Green…………………………….0.05-0.1 mm
Yellow……………………………..0.1-0.2 mm
Blue………………………………..0.2-0.3 mm
Blue/Red………………………….0.3-0.4 mm
Green/Red………………………..0.4-0.5 mm
Yellow/Red………………………..0.5-0.7 mm
Yellow/Green……………………..0.7-1.0 mm
Compatible with the following Synchrotron Radiation Beamlines
North & South America
• The Advanced Light Source, Berkeley, California ALS 4.2.2, ALS 11.3.1, ALS 12.2.2, ALS 12.3.2
• The Advanced Photon Source, Argonne, Illinois APS 14-BM-C BioCARS, APS 14-ID-B BioCARS, APS 21-ID-D LS-CAT, APS 21-ID-E LS-CAT, APS 21-ID-F LS-CAT, APS 21-ID-G LS-CAT, APS 23-ID-B GA/CA, APS 23-ID-D GA/CA, APS 24-ID-E NE-CAT, APS 31-ID LR-CAT
• Center for Advanced Microstructures and Devices, Baton Rouge, Louisiana CAMD GCPCC
• Cornell High Energy, Synchrotron Source, Ithaca, New York CHESS A1, CHESS F1
• The Brazilian Synchrotron Light Laboratory, Sao Paulo, Brazil LNLS D03B-MX1, LNLS W01B-MX2
• National Synchrotron Light Source, Upton, New York NSLS X3B, NSLS X4A, NSLS X4C, NSLS X6A, NSLS X12B, NSLS X12C, NSLS X25, NSLS X26C, NSLS X29
Europe
• Cerdanyola del Vallés, Spain ALBA XALOC
• Berlin Electron Storage Ring Company for Synchrotron Radiation, Berlin, Germany BESSY 14.1, BESSY 14.2, BESSY 14.3
• Diamond Light Source, Didcot, Oxfordshire, England DIAMOND I02, DIAMOND I03, DIAMOND I04, DIAMOND I04.1, DIAMOND I24
• Elettra Sincrotrone Trieste, Trieste, Italy ELETTRA 5.2R
• European Molecular Biology Laboratory, Hamburg, Germany EMBL/DESY P13, EMBL/DESY P14
• European Synchrotron Radiation Facility, Grenoble, France ESRF BM14, ESRF BM30A, ID30A-1/MASSIF-1,
ID30A-3/MASSIF-3, ESRF ID23-1, ESRF ID23-2, ESRF ID29
• Max-Lab, Lund University, Sweden MAX II I911-2, MAX II I911-3
• Swiss Light Source at Paul Scherer Institut, Switzerland SLS X06DA-PXIII, SLS X06SA-PXI, SLS X10SA-PXII
• SOLEIL, Saint-Aubin, France SOLEIL PROXIMA1, SOLEIL PROXIMA2
Asia & Australia
• Shanghai Synchrotron Radiation Facility, Shanghai, China SSRF BL17U1
• Beijing Synchrotron Radiation Facility, Beijing, China BSRF 1W2B, BSRF 3W1A
• Super Photon ring-8 GeV, Japan SPRING-8 BL12B2, SPRING-8 BL24XU, SPRING-8 BL26B1, SPRING-8 BL26B2, SPRING-8 BL32B2, SPRING-8 BL32XU, SPRING-8 BL38B1, SPRING-8 BL41XU, SPRING-8 BL44B2, SPRING-8 BL44XU
CrystalCap™ SPINE HT
CrystalCap SPINE HT
CrystalCap™ SPINE HT
CrystalCap SPINE HT
CrystalCap™ SPINE HT
CrystalCap SPINE HT

CAT NO NAME DESCRIPTION
HR8-118 CrystalCap SPINE HT 0.025-0.05 mm CryoLoop, without Vial – 30 pack
HR8-120 CrystalCap SPINE HT 0.05-0.1 mm CryoLoop, without Vial – 30 pack
HR8-122 CrystalCap SPINE HT 0.1-0.2 mm CryoLoop, without Vial – 30 pack
HR8-124 CrystalCap SPINE HT 0.2-0.3 mm CryoLoop, without Vial – 30 pack
HR8-126 CrystalCap SPINE HT 0.3-0.4 mm CryoLoop, without Vial – 30 pack
HR8-128 CrystalCap SPINE HT 0.4-0.5 mm CryoLoop, without Vial – 30 pack
HR8-130 CrystalCap SPINE HT 0.5-0.7mm CryoLoop, without Vial – 30 pack
HR8-132 CrystalCap SPINE HT 0.7-1.0 mm CryoLoop, without Vial – 30 pack
HR8-112 CrystalCap SPINE HT Cap only – 30 pack
HR8-116 CrystalCap SPINE HT Cap/Vial Cap/Vial only – 30 pack
HR8-094 CrystalCap SPINE without 2D code/printing Cap only – 30 pack
HR8-114 CrystalCap SPINE Vial Vial only – 30 pack

Hampton Natrix • Natrix 2 • Natrix HT

Hampton Natrix • Natrix 2 • Natrix HT

Applications
  Primary biased sparse matrix crystallization screen for nucleic acids & protein/nucleic acid complexes  主要用于核酸和蛋白质/核酸复合物的删选
Features

Nucleic acid sparse matrix screen
Sparse matrix formulation efficiently samples salts, polyols, polymers, organics, additives & pH
pH range 5.6 – 8.5
Tube or Deep Well block format
 Description
Natrix, Natrix 2 and Natrix HT are based upon published reagent formulations for the crystallization of nucleic acids and protein-nucleic acid complexes. A variety of hammerhead ribozymes and other ribozymes, RNAs, DNAs, RNA-drug complexes, and RNA-protein complexes have been crystallized using the Natrix protocols.By using sparse matrix sampling technology, The Natrix kits allow one to quickly test wide ranges of pH, salts, and precipitants using a very small sample of nucleic acid.
Natrix screens are unique in that rather than relying solely on the traditional nucleic acid precipitant MPD, Natrix screens also utilize Polyethylene glycols (PEGs) in a variety of molecular weights (200, 400, 4,000, 8,000) as well as 2-Propanol, Polyethylene glycol monomethyl ether (PEG MME), and 1,6-Hexanediol. Many of the polymeric and low molecular weight organic precipitants are combined with various monovalent salts as precipitating agents. This combination of salts and low molecular weight organics and polyalcohols, as well as the utilization of varying chain length PEGs, has proven to be a successful combination for producing nucleic acid and protein-nucleic acid complex crystals.
Natrix contains 48 unique reagents, 10 ml each and is based on the sparse matrix formulation first described by William Scott in 1995.
Natrix 2, an extension of Natrix, contains 48 unique reagents, 10 ml each. Natrix 2 is a biased sparse matrix screen based on extracting patterns from crystallization data as well as reagent formulations first described by Berger et al in 1996.
Natrix HT contains 1 ml of each reagent from Natrix and Natrix 2 in a single Deep Well block format.
Ready-to-use reagents are sterile filtered and formulated with ultra-pure Type 1 water, using the highest purity salts, polymers, organics and buffers. Individual reagents are available through the Hampton Research Custom Shop.
Natrix • Natrix 2 • Natrix HT
Natrix • Natrix 2 • Natrix HT
View Full Size
Natrix • Natrix 2 • Natrix HT

 

CAT NO NAME DESCRIPTION
HR2-116 Natrix 10 ml, tube format
HR2-117 Natrix 2 10 ml, tube format
HR2-131 Natrix HT 1 ml, Deep Well block format

Hampton Optimize Reagents

Hampton Optimize Reagents
1、Optimize – Polymers
Crystallization grade polymers for formulating screens or optimization
2、Optimize – Organics (Volatile)
Crystallization grade organics (volatile) for formulating screens or optimization
3、Optimize – Organics (Non-Volatile)
Crystallization grade organics (non-volatile) for formulating screens or optimization
4、Optimize – Salts
Crystallization grade salts for formulating screens or optimization
5、Optimize – Buffers
Crystallization grade buffers for formulating screens or optimization
6、Optimize – Solubilizing Agents (NDSB)
Crystallization grade non detergent sulfobetaines
7、Optimize – Reducing Agent
TCEP Hydrochloride
8、Optimize – Monoolein
LCP – Lipidic Cubic Phase
9、Optimize – Cryoprotectants
For cryoprotection of crystals
10、Optimize – Oils for Crystallization
Microbatch crystallization & oil layering
11、Optimize – Izit Crystal Dye
Izit™ color dye to differentiate protein crystals from salt crystals

Hampton50号毛细管Glass Number 50 Capillaries

Hampton50号毛细管Glass Number 50 Capillaries
Glass Number 50 Capillaries

应用:
  X-ray data collection
  Liquid-liquid diffusion crystallization
  Gel acupuncture crystallization
Features
  Glass Number 50 (borosilicate)
  Thin walled – 10 micron
      上海金畔生物作为Hampton蛋白结晶产品的代理商,竭诚为您服务,欢迎新老客户咨询。

Description 描述
Glass Number 50 (borosilicate glass) capillaries that are extremely thin walled (approximately 10 micron wall thickness). The length of the capillary has a well defined diameter, with one end having a funnel shape and the other end closed. Glass capillaries have a wall thickness of 0.01 mm and an overall length of 80 mm +/- 5 mm. Glass capillaries are available in a wide range of outside diameters from 0.1 mm to 2.0 mm. They are designed to mount, hold, and store small molecule and biological macromolecular crystals for x-ray data collection. Capillaries can also be used for crystal density measurements and crystal growth experiments. The capillaries can be sealed tightly against moisture and gases using wax, epoxy, or other sealing materials.
In determining what glass or quartz capillary is right for you, please refer to the “Linear Absorption Coefficient µ cm-1” table. This table indicates the amount of radiation that is absorbed by the capillary during x-ray data collection.
For 0.1 mm to 2.0 mm capillaries the open end capillary tube base size is 3.0 +/- 0.15 mm OD x 0.13 +/- 0.10 mm Wall thickness.
The Diameter is measured 40 mm from the closed end. The tolerances are as follows
Glass Number 50 Capillaries
Glass Number 50 Capillaries
 

0.1 mm -0.075 / +0.075 mm
0.2 mm -0.050 / +0.050 mm
0.3 mm -0.050 / +0.100 mm
0.4 mm -0.100 / +0.100 mm
0.5 mm -0.100 / +0.100 mm
0.6 mm -0.100 / +0.100 mm
0.7 mm -0.150 / +0.150 mm
0.8 mm -0.150 / +0.150 mm
0.9 mm -0.150 / +0.150 mm
1.0 mm -0.150 / +0.250 mm
1.5 mm -0.250 / +0.250 mm
2.0 mm -0.250 / +0.250 mm
Capillaries have only been tested at atmospheric pressure (760 mmHg (torr), 29.92 inHg, 14.696 psi). Use at other pressures has not been tested.
Sigma代理  Abcam代理  CST代理  Santa Cruz代理  Biolegend代理 ebioscience代理  Invitrogen代理   millipore代理  BD流式抗体代理   GeneTe x抗体代理  Novus抗体代理   R&D代理 Biovison代理  Jackson代理  MBL抗体代理  ProSpec抗体代理  Bethyl抗体代理  Antibody Revolution抗体代理  Torrey Pines Biolabs代理  Amresco代理  MPbio代理  Laysan bio代理  NANOCS代理  Avanti代理  wako代理  lumiprobe代理(活性荧光染料)   NEB酶代理  Roche酶代理  Toyobo酶代理   USP代理  EP代理  Dr代理  TRC代理  TCI代理  Reagecon代理 Megazyme代理 Hampton代理(蛋白结晶) whatman代理(滤膜滤纸) GE代理(蛋白纯化) Corning康宁代理  Axygen代理 Falcon代理  NISSUI日水代理 Himedia代理 OXOID代理  BD培养基代理 Ludger代理(糖蛋白分析产品)  Eppendorf代理  Labnet代理  标准品代理 抗体代理 酶试剂代理  培养基代理 耗材代理 Elisa试剂盒代理 。

Hampton 银弹 Silver Bullets

Hampton 银弹 Silver Bullets

Applications

Additive screen for the optimization of protein crystals
For use with soluble proteins and membrane proteins
Additive screen to discover different crystal forms
Secondary or orthogonal crystallization screen when traditional screens are not successful
Additive screen for the optimization of protein solubility and stability
Features

Developed at Hampton Research
Screens a portfolio of small molecules and excipients for their ability to establish stabilizing, intermolecular, hydrogen bonding, hydrophobic and electrostatic interactions which could promote lattice formation and crystallization

Small organic acids & organic salts
Biologically active small molecules
Amino acids & peptides
Macromolecular digests
Co-factors & ligands
Biochemical pathway intermediates
Nucleotides, pharmacaphores & carbohydrates

Description
Silver Bullets screens a portfolio of small molecules for their ability to establish stabilizing, inter molecular, hydrogen bonding, hydrophobic and electrostatic interactions which could promote stability, lattice formation, and crystallization.1-3
Published results with the Silver Bullets have been very encouraging, with more than twice as many proteins being crystallized overall as were crystallized from controls free of any small molecules.1-3
X-ray diffraction analysis has revealed the small molecule Silver Bullets in the crystal lattice, involved at the centers of hydrogen bonding networks and electrostatic interaction.1-3 Silver Bullets is compatible with hanging, sitting and sandwich drop vapor diffusion, microbatch, free interface, and microdialysis crystallization methods. Silver Bullets can be used with Dynamic Light Scattering (DLS), ThermoFluor, and Size Exclusion Chromatography assays.
Silver Bullets reagent portfolio
•Organic salts and acids
•Biologically active small molecules
•Amino acids and peptides
•Macromolecular digests
The Silver Bullets kit is a library of small molecules that have been shown to promote crystal lattice formation. X-ray diffraction analysis has demonstrated the reagents have the ability to:
•Stabilize the conformation of the protein
•Perturb the interaction of the protein with the solvent
•Participate in forming important lattice contacts
•Build the crystal lattice by forming reversible cross-links between the macromolecules in the crystal
The Silver Bullets kit is composed of 96 solutions in a single Deep Well block (Greiner 786261 block specifications: Total Volume: 0.5 mL Working Volume: 0.03 – 0.7 mL at Room Temperature 0.03 – 0.55 mL at -20ºC, Well Profile: Conical (V), Bottom Well Bottom: Solid, Plate Color: Translucent), HT format.
Each Silver Bullets reagent is a mixture of small molecules or macromolecular digests in 0.02 M HEPES sodium pH 6.8 buffer. Each solution contains between 2 and 20 small molecules.
Silver Bullets reagent volume is 0.5 ml (each well).
ThermoFluor is a registered trademark of Johnson & Johnson.

Hampton  Silver Bullets Bio

Silver Bullets • Silver Bullets Bio
Silver Bullets • Silver Bullets Bio
上海金畔生物作为Hampton蛋白结晶产品的代理商,竭诚为您服务,欢迎新老客户咨询。
Applications 应用

Additive screen for the optimization of protein crystals
For use with soluble proteins and membrane proteins
Additive screen to discover different crystal forms
Secondary or orthogonal crystallization screen when traditional screens are not successful
Additive screen for the optimization of protein solubility and stability

Features

Screens a portfolio of small molecules and excipients for their ability to establish stabilizing, intermolecular, hydrogen bonding, hydrophobic and electrostatic interactions which could promote lattice formation and crystallization

Small organic acids & organic salts
Biologically active small molecules
Amino acids & peptides
Macromolecular digests
Co-factors & ligands
Biochemical pathway intermediates
Nucleotides, pharmacaphores & carbohydrates

 

Developed at Hampton Research
Two sets of 96 reagents, composed of more than 1,090 chemicals, of which more than 400 are uniqu

Please note, the Silver Bullets Bio Screen is temporarily unavailable as a new formulation is in development
 

Hampton 蛋白结晶向导管Wizard Tube

Wizard Tube 
The Wizard™ Classic line of random sparse matrix screens is designed to increase your probability of producing crystals during the coarse screening phase when crystallizing biological macromolecules (proteins, nucleic acids, peptides, and combinations thereof).
The Wizard Classic reagents are proven to be a highly effective starting point in the screening of biological macromolecules. The Wizard Classic formulations include a large range of crystallants, buffers, and salts covering a broad range of crystallization space at pH levels from pH 4.5 to pH 10.5.Choose from Wizard Classic 1, 2, 3, or 4 non-overlapping formulations in matrix blocks or tubes.

图片
Wizard Cubic LCP
The tools in the Wizard Cubic LCP (lipidic cubic phase) Kit enable researchers to prepare LCP-type crystallizations by hand. Ideal for low-protein experiments: effective protein volume for a single crystallization experiment is about 80 nanoliters. Wizard Cubic LCP Kit tools work especially well when traditional methods have failed to yield crystals. Lipidic cubic phase has worked well for the crystallization of 7TM membrane proteins (proteins with seven transmembrane helices). Four out of six GPCRs (G-protein coupled receptors), an important membrane protein class, and several microbial 7TM proteins have been crystallized using the LCP approach.
图片
CRYO (I、II)
The Wizard Cryo™ line of random sparse matrix screens is designed for scientists who want to avoid the additional step of optimizing a cryoprotectant condition. Every Wizard Cryo formulation flash-freezes to a clear, amorphous glass in liquid nitrogen or in a cryo-stream at 100K. Crystals can be frozen directly from their growth drops, avoiding the additional step of pre-equilibration with an artificial cryo-condition that can damage the crystal. Eleven different cryocrystallants and sparing use of glycerol ensures a broad sampling of possible cryo conditions. Choose from Wizard Cryo 1 or 2 formulations in tubes or Wizard Cryo 1 and 2 together in a 96-well matrix block.
图片