什么是好的磁力分离架?

什么是好的磁力分离架?

什么是磁选?

磁选是利用磁力(图1中的磁辊)从混合物(粉状矿石)中提取磁性成分(磁性颗粒)的过程。结果是受磁场强烈影响的磁性材料(称为超顺磁性)与非磁性或磁性较低的材料分离。

在磁分离中,超顺磁性物质需要相对较弱的磁场来吸引。分离这些材料的设备通常使用磁化的磁铁。它们不需要电力来维持磁场。

磁选如何工作?

如图1流程所示,当粉状矿石在传送带上移动时,磁选利用磁辊吸引磁性颗粒,磁性颗粒进一步移动并落入右侧收集器中,直至磁力减弱而无磁性。 -磁性颗粒从皮带上落入左侧的收集器中。

什么是好的磁力分离架?

图 1.选矿厂中的磁选。

生物样品制备中的磁分离

磁分离也广泛应用于生物实验室的样品制备,例如 cfDNA 提取DNA 纯化DNA 大小测定染色质免疫沉淀 (ChIP)细胞分离。它使用磁性纳米粒子(也称为纳米珠或珠子)来结合目标样品。磁珠方法不需要柱或离心。他们利用磁力来聚集、洗涤和洗脱磁珠结合的目标。这使得工作流程简单且易于自动化,从而提高吞吐量。

典型的磁珠启用方案类似于下面用于 DNA 大小测定的方案。

什么是好的磁力分离架?

图 2. DNA 大小测定工作流程。

  1. 混合:将纳米颗粒与 DNA 样品混合。

  2. 结合:纳米颗粒结合所需的 DNA 大小片段。

  3. 清洗:使用磁力聚集结合的材料。通过抽吸去除未结合的材料,剩下的是纳米颗粒结合的目标。

  4. 洗脱:从纳米颗粒中释放结合的目标尺寸片段。选定的 DNA 样本已准备好用于下游应用。

什么是磁力分离架?

在上述步骤3洗涤和4洗脱中,使用了磁铁。这就是磁力分离架发挥作用的地方。

磁分离架是一种用于磁珠样品制备的工具,可提供磁力来拉动和聚集目标样品,以及用于批量处理的管固定架。

好的磁力分离架有什么特点?

怎样才是一个好的工具?性能、耐用性和成本,即有效、快速、一致且廉价。
在上述工作流程中,良好的磁力分离架应该能够快速拉出目标样品并将样品聚集在易于执行抽吸的位置,例如靠近管尖的位置。
NVIGEN 的磁力分离架集所有这些于一体,最初是我们实验室根据我们自己的需求设计的。它由强的稀土永磁体制成,始终提供强磁力。磁铁位于紧贴管端部的倾斜表面下方。

什么是好的磁力分离架?

图 3. NVIGEN 的内部磁力分离架,配有 1.5ml 试管和部分放大。管子与倾斜表面紧密贴合,样品聚集在一个很小的点上,为抽吸留下了空间。


什么是好的磁力分离架?

图 4. NVIGEN 的内部磁力分离架,配有 0.65ml 试管和部分放大。样品聚集在管的尖处,为抽吸留下空间。

什么是 D-荧光素?

什么是 D-荧光素?

D-荧光素是产生生物发光或光的荧光素酶的小分子底物。自然界中或通过化学合成产生的荧光素和类似物有多种类型。底物和酶存在于多种发光生物体中,包括萤火虫和甲虫。萤火虫荧光素与甲虫荧光素相同
荧光素荧光素酶系统如何工作? D-荧光素的氧化可以产生光,但在没有酶和辅因子 ATP 的情况下,反应速度极慢。该酶催化其底物的化学反应产生光。另一种手性形式,L-荧光素,竞争性地抑制化学反应。
D-荧光素有什么用途?发光计和光学显微镜已被开发用于检测两步荧光素酶催化化学反应发出的光。荧光素酶蛋白可以在细胞和动物(主要是小鼠)中瞬时或稳定表达。随着荧光素荧光素酶ATP试剂、设备和基因工程的发展,萤火虫荧光素酶和荧光素已广泛应用于体外和体内报告基因检测,检测基因表达以及在细胞活力检测或激酶活性检测中检测细胞ATP水平。荧光素荧光素酶 ATP 检测试剂盒可市售。萤火虫荧光素酶和 D-荧光素的应用(包括体内成像)仍在扩大。

如何制备D-荧光素钾盐?尽管 D-荧光素是萤火虫和甲虫中产生的天然化合物,但化学合成的成本比从昆虫中提取生物合成化学物质便宜得多。市场上D-荧光素游离酸、D-荧光素钾盐、D-荧光素钠盐。我们的合成 D-荧光素钾盐(目录号 MB000102-R70170 或 MB102)经过纯化,可去除脱氢荧光素和 L-荧光素(萤火虫荧光素酶的竞争性抑制剂)。该化学品的水溶性很大,可制成高浓度的储备液。

什么是蓝/绿 LED 技术?

什么是蓝/绿 LED 技术?

蓝/绿 LED 技术——安全检测所有红色和绿色 DNA 染料

蓝/绿 LED 技术是一种安全且革命性的核酸染色检测方法。该技术使用 470 nm 至 520 nm 范围内的光谱波长组合。该光范围位于可见光谱内,对用户或 DNA 样本无害。作为我们基本和高级凝胶记录系统的基本组成部分,蓝/绿 LED 能够以非常高的强度有效激发所有常见的红色和绿色 DNA 染料(例如溴化乙锭或 MIDORI Green )。在本页中,我们将展示常用的 DNA 可视化紫外光的最大缺点,解释蓝/绿 LED 灯背后的优势和革命性技术,并介绍我们令人印象深刻的蓝/绿 LED 凝胶成像系统。

紫外线的危险

紫外线与溴化乙锭染色一起在分子生物学实验室中检测核酸已有 50 年的历史,并且至今仍在使用。然而,DNA 吸收紫外光谱中的光,会对 DNA 造成强烈损害,并导致修改和降解,不仅对 DNA 样本而且对用户也如此。我们坚信,是时候摆脱这种具有破坏性和危险性的光源了,因为使用紫外线进行 DNA 可视化不再代表先进的方法。

暴露于紫外线会对皮肤和眼睛造成严重伤害。使用时,观看者的眼睛和裸露的皮肤应始终佩戴防护服。

紫外光对样品 DNA 的快速破坏会对下游应用产生严重影响。 30 秒的紫外线照射足以大幅降低克隆效率!

紫外光透射仪仅使用单一激发波长。与光谱蓝/绿 LED 光 (470 nm – 520 nm) 相比,这需要损失激发电位。

蓝色/绿色 LED – 安全且强大的 DNA 检测

蓝色/绿色 LED 发出 470 nm – 520 nm 的安全可见光。该光谱对 DNA 没有破坏性,使用户的凝胶记录过程像看电视一样安全,并保持 DNA 样本不受伤害。与紫外光相比,即使长时间暴露在光下,DNA 完整性和克隆/测序效率也全不受影响。蓝/绿 LED 灯令人放心的安全性并不会影响其性能。大多数核酸染色剂的吸收光谱在蓝/绿光范围内显示出足够的光吸收。由于整个蓝/绿光谱光的累积能量吸收,强大的 LED 技术可有效激发所有常用的红色和绿色 DNA 染料。绿色 DNA 染料对蓝/绿光表现出非常高的吸收,显示出具有好的谱带强度的特殊信号。我们的蓝/绿 LED 透照仪具有非常稳定和可靠的光性能。透照仪的 LED 使用寿命为 10 年连续照明,或者正常实验室使用长达 20 年,是坚固、节约成本和可持续的系统。

蓝/绿 LED 对于日常实验室使用来说是全安全的。 LED 光在可见光谱中发射,不会对样品或用户造成任何损害。

重要的是吸收曲线下的激发面积!蓝/绿光谱光通过累积的能量吸收有效地激发红色和绿色 DNA 染料。

LED 灯非常稳定可靠,正常实验室处理可使用长达 20 年。紫外线灯泡很快就会失去效率,需要定期更换。

什么是钙卫蛋白?

什么是钙卫蛋白?

钙卫蛋白是一种相当小的蛋白质,约占中性粒细胞胞质的 60%。当免疫系统因微生物或真菌感染而被激活时,它会释放到周围环境,并用于诊断炎症性肠病 (IBD),以将其与功能性肠易激综合征 (IBS) 区分开来。它还常规用于 IBD 患者的随访,以预测复发或确定对治疗的反应。

钙卫蛋白是一种非特异性生物标志物,例如更常用的C反应蛋白(CRP);然而,该蛋白质的稳定性、稳健性和无需合成的局部释放使其成为 IBD 的生物标志物。因此,该蛋白质可以并且已经用于多种疾病的诊断和随访。 


钙卫蛋白Flexi

钙卫蛋白是一种 36 千道尔顿的钙和锌结合蛋白,由多形核中性粒细胞、单核细胞和鳞状上皮细胞(正常皮肤除外)产生。粪便中钙卫蛋白的浓度测量是一种非侵入性客观指标;它可用于确定疾病活动性和对 IBD 治疗的反应,并判断何时达到真正的缓解。还可以分析血清和血浆样本中的钙卫蛋白,在患有细菌感染、脓毒症和类风湿性关节炎 (RA) 和系统性红斑狼疮 (SLE) 等炎症性疾病的患者中发现了高钙卫蛋白水平。

建议将钙卫蛋白 Flexi 测定设置为 3 步夹心测定,其中包含的抗体具有作为捕获和检测器的一定功能,以确保检测粪便提取物或血浆样品中天然钙卫蛋白的最佳特异性。推荐的检测设计也已用于 Calpro AS(Svar Life Science 集团公司成员)开发的其他诊断测试中。推荐的 Gyrolab ® 检测方案如下所述,允许使用 Svar Life Science 的专有抗体进行自动钙卫蛋白定量。

什么是双足硅烷

什么是双足硅烷

双足硅烷是一系列粘合促进剂,其固有的水解稳定性比传统硅烷高出约 10,000 倍。这些产品对许多复合材料系统的基材粘合和机械强度具有重大影响——包括环氧树脂、聚氨酯、环氧树脂/聚氨酯混合物、聚硫化物、氰基丙烯酸酯和有机硅——可用于水性、高固含量和光敏化学品。双足硅烷是一种很有前途的材料,已经在塑料光学、多层印刷电路板以及黑色金属和有色金属的粘合底漆等多种应用中取得了商业成功。由于硅分子的性质,硅烷偶联剂是一种用于抵抗聚合物和基材之间因水侵入而劣化的材料。通过界面的改性,硅烷偶联剂不仅提供耐水性,而且由于树脂和硅烷的互穿聚合物网络,还可以增加界面的强度。通常在硅烷表面处理或“原位”应用中,常规硅烷中的烷氧基会水解形成含硅烷醇的物质,它们具有高反应性并负责与基材形成氢键。这些传统的硅烷可以自缩合形成硅氧烷,从而导致相分离或凝胶化。为了提高水解稳定性,可以加入双足硅烷来提高许多复合材料系统的保质期、基材粘合性和机械强度。

功能性双足硅烷以及非功能性双足硅烷与功能性常规硅烷的组合对基材粘合具有显着影响,并改善许多粘合剂体系,特别是底漆和水浸应用。硅烷提供粘合力的基本步骤是与基材形成-Si-OX键。如果基材是硅质的,则粘合耐久性由Si-O-Si的键解离决定。根据方程 ≡Si-O-Si≡ + H 2 O ⇌ ≡Si-OH + ≡Si-OH,键解离平衡为 ~10 -4。认识到底物羟基不受扩散影响,该因子更接近 10 -2。通过将键的数量增加三个,解离平衡增加到~10 -6。理论上,这意味着通常在 1 个月内发生的解离键线失效会增加到约 10,000 个月。实际上,其他因素也会影响失效,但二足硅烷显然有可能在许多设备的使用寿命要求期间消除粘合失效。这种效果被认为是界面交联密度增加和二足硅烷耐水解性的结果,据估计,其耐水解性比传统偶联剂高约 10,000 倍。与只能与基材形成三个键的传统硅烷相比,二足硅烷能够与基材形成六个键。不同的基材、条件、硅烷组合和应用都会影响双足硅烷的选择。根据所需特性选择硅烷混合物。例如,改进的湿粘附性、耐化学性、加工和/或涂层性能,例如改进的腐蚀保护。

什么是双足硅烷

许多常规偶联剂经常与10-40%的非官能二足硅烷组合使用,其中常规偶联剂为应用提供适当的官能度,而非官能二足硅烷提供增加的耐久性。在典型应用中,双足材料,例如双(三乙氧基甲硅烷基)乙烷(SIB1817.0) 以 1:5 至 1:10 的比例与传统偶联剂结合。然后按照与传统硅烷偶联剂相同的方法进行加工。添加非功能性双足硅烷后,与单独使用传统硅烷相比,涂层的耐久性得到了延长。


什么是双足硅烷

什么是双足硅烷

抗体定量的最佳技术是什么?

抗体定量的最佳技术是什么?

抗体定量是可重复标记和可靠鉴定各种单克隆抗体类别的重要步骤。它提供了可操作的信息,包括特定应用的最佳稀释度、如何有效纯化特定抗体以及哪些细胞系将产生最有价值的结果。

评估总抗体浓度可能具有挑战性,因为根据用于纯化样品的技术,只有总计数的一部分包含活性抗原结合抗体。此外,分子科学家可以使用各种实验方法来进行抗体定量。那么哪种技术最好呢?

抗体终点滴定

滴定用于测量未知溶质的浓度。抗体浓度由终点指示,通常是溶液中跟随或等于等当点的颜色变化。尽管该技术有其优点,但抗体滴度可能会产生误导,特别是对于含有高浓度非活性或低亲和力抗体的样品。

酶联免疫吸附测定 (ELISA)

ELISA 试剂盒在很大程度上取代了湿化学实验室中的终点滴定,因为它们提供了更高的重现性和总抗体浓度的准确测量。它们的工作原理是抗体-抗原结合,允许使用与报告酶缀合的抗体对特定分析物进行准确定量,报告酶在添加到底物时会进行催化。同样,反应通常由颜色变化来指示。

传统的 ELISA 试剂盒通常被认为是临床诊断应用的金标准,但这种免疫吸附测定有多种形式,包括直接、夹心和竞争 ELISA 试剂盒。

然而,结果的精度通常基于单点插值,单点插值依赖于落在标准曲线内的样品稀释度光密度。

通过分光光度法进行抗体定量

分光光度法可以根据 280 nm 处的吸光度快速准确地进行抗体定量。通过 280 nm 处的分光光度吸光度进行抗体定量是一种简单且经济有效的方法。它提供了输入特定消光系数的机会,无需标准曲线或检测试剂即可获得准确的测量结果,并可以评估荧光标记抗体的染料掺入情况。此外,用户还可以使用 Bradford 或 Lowry 等比色测定法进行分光光度抗体定量。

什么是 PicoGreen™ 定量?

什么是 PicoGreen™ 定量?

PicoGreen dsDNA 定量试剂是一种高灵敏度荧光核酸染色剂,用于定量双链 DNA。PicoGreen 广泛用于分子生物学程序,例如用于亚克隆的 DNA 片段纯化、用于文库生成的 cDNA 合成以及引物测定。

PicoGreen 定量的优点

广泛使用的核酸浓度测量方法是测定 260nm 处的吸光度 (A260)。这被称为吸光度方法,由于测量速度快、不需要试剂盒或试剂的直接定量以及现代微量仪器的宽动态范围而被广泛使用。 荧光方法通常用于由于单链核酸、蛋白质和核苷酸的污染而需要进行特定定量的情况,这些单链核酸、蛋白质和核苷酸可能会影响使用吸光度的总信号。此外,核酸制剂中经常存在的污染物可能会造成干扰,并且无法区分 DNA 和 RNA。

Hoechst(双苯甲亚胺)染料也是敏感的核酸染色剂。然而,该测定的选择性稍高,无法用于 dsDNA,并且在蛋白质存在时不会显示出显着的荧光增强。

PicoGreen dsDNA 定量分析可选择性检测低至 25 pg/ml 的 dsDNA,其中存在的 ssDNA、RNA 和游离核苷酸对荧光强度的影响极小。该检测呈线性跨越三个数量级,并且具有少量的序列依赖性,这意味着可以从一系列来源(例如基因组 DNA、病毒 DNA、小量制备 DNA 或 PCR 扩增产物)精确测量 DNA。

PicoGreen dsDNA 定量非常适合基于 PCR 的测定、DNA 损伤测定、基因组 DNA 定量、微阵列样品、测量复杂混合物中的 dsDNA 以及病毒 DNA 定量。

用于 PicoGreen 定量的 QFX 荧光计

QFX 荧光计是同类仪器中灵敏、重现性好的仪器。对于需要增强特异性或灵敏度的荧光测定应用来说,它是一种强大的解决方案。该仪器能够使用四个用户可选的荧光通道来定量核酸和蛋白质,从而允许使用所有主要的定量测定。QFX 荧光计提供的数据质量以及强大的软件和网络集成,可实现无缝数据处理。屡获殊荣的 DS-11 系列分光光度计/荧光计还集成了完整的荧光功能。

当 QFX 与 DeNovix 的荧光检测结合使用时,它可以定量 0.5 pg/μL 至 4000 ng/μL 范围内的 DNA,是定量降解、污染或低浓度样品的最佳解决方案。

DeNovix 荧光计的主要优点之一是科学家可以选择使用任何制造商的检测方法,包括 PicoGreen dsDNA 或 QuantIT™ 检测方法。

什么是分光光度计?

什么是分光光度计?

分光光度计测量光束的强度。通常,分光光度计用于测量样品吸收了多少光。从分光光度计恢复的信息可用于识别化合物或量化给定化学物质的浓度。

许多行业,包括制药、食品和饮料以及建筑行业,都使用分光光度计。1考古学和文化遗产还利用分光光度计的能力来量化颜色并识别艺术品创作中使用的颜料,这可用于确定作品的年代,甚至用于鉴定欺诈的法医工作。2

分光光度计的主要部件包括光源、样品架、光学器件和检测器。许多分光光度计使用宽带光源在大光谱范围内运行,但对于非常具体的设计或成本效益的应用,可以使用单波长光源。

由于分光光度计可用于气体、液体或固体,因此需要根据应用适当设计样品支架。分光光度计中的光学组件根据光源的不同而变化。对于宽带可见分光光度计,通常有一个由光栅和狭缝组成的扫描单色仪,用于色散光谱并允许选择单一波长。然后转动光栅选择不同的颜色并记录感兴趣样品的全吸收光谱。

什么是细胞外囊泡?

什么是细胞外囊泡?

细胞外囊泡 (EV) 是细胞分泌的小型膜结合颗粒,被认为充当细胞信使,将货物从一个细胞运送到另一个细胞。 EV 有多种亚型,其功能、货物和尺寸各不相同,直径范围约为 30-1000 nm。最小的 EV 类型是外泌体,其大小约为 30-150 nm。 EV 起源于称为多泡体 (MVB) 的细胞区室,其本身源自内体的内陷。当 MVB 与质膜融合并释放其货物时,囊泡就会被释放。

在生物医学研究中,电动汽车及其货物被用作癌症和其他疾病的诊断生物标志物。可以使用超速离心、PEG 沉淀和免疫捕获珠等技术从血液或其他生物液体中分离 EV。

EV 膜含有源自原始细胞质膜的跨膜蛋白,其中通常包括四跨膜蛋白家族的蛋白(例如 CD9、CD63 和 CD81)。 EV 内部含有蛋白质和 RNA 等细胞质成分。 EV 成分可以使用 RNAseq、蛋白质印迹和流式细胞术等方法进行分析。为了通过流式细胞术进行表征,研究人员可以使用对 EV 成分(如膜和核酸)进行染色的染料,以及与四跨膜蛋白或其他感兴趣的蛋白质结合的抗体。

什么是荧光猝灭?

什么是荧光猝灭?

化合物的荧光可以通过多种过程猝灭(即减少或完*消除),而不会破坏荧光团。荧光猝灭效应导致荧光强度降低。一旦猝灭剂被移除或猝灭机制被“关闭”,原始的荧光强度就会重新出现。

猝灭效应导致荧光分子的电子激发态在没有辐射的情况下返回基态,或者阻止实际激发到荧光态。

在实践中,荧光猝灭在许多应用中得到利用,因为它是一种易于观察或测量的现象。因此,它是分子水平上发生的过程的指标。例如,分析物的存在或不存在会导致荧光团和猝灭剂之间的距离发生变化,从而导致荧光发生变化。除了荧光强度之外,寿命有时也可以用来衡量这种变化。

分子信标
包括所谓的“genepin”、“hairpin”或“分子信标”技术。例如,在这些“智能探针”中,荧光染料和荧光猝灭剂位于单链 DNA 的相对两端。由于末端片段上有几个互补碱基,杂交发生在那里,即产生了部分 DNA 双链。DNA 的中间片段因此形成一个环:所得结构类似于发夹。标记物的荧光现在被猝灭剂的空间接近性猝灭,例如通过 FRET 机制。如果现在将与第一条链的碱基序列互补的DNA链添加到溶液中,则由于所有碱基更强的相互作用,这两条链会杂交。染料和猝灭剂在空间上分离,导致荧光重新出现。您可以利用这一原理设计许多不同类型的实验并得出有关分子过程的结论。
除了使用染料-猝灭剂对之外,还可以使用两种荧光染料,其荧光行为如福斯特共振能量转移中所述。

什么是荧光猝灭?

什么是染料聚集Farbstoff-Aggregation?

什么是染料聚集Farbstoff-Aggregation?

通过吸收光,染料分子进入电子激发态。吸收的能量仅存储很短的时间,并在激发态寿命结束后再次发射,例如作为荧光。

在染料溶液中,被激发的染料分子(被视为点偶极子或振荡器)如果它们之间的距离足够大,则不会相互影响。因此,整体中存在的发色团的吸收和荧光不会改变。

发色团之间的平均距离约为 5 – 10 nm,影响仅通过振荡器的“辐射场”发生,即没有直接接触。例如,通过福斯特共振能量转移(FRET)模型描述了两种染料分子之间的这种类型的相互作用

如果发色团之间的距离变得更小,例如在非常浓缩的溶液中,则由于各个振荡器的静电力,可能会产生强烈的相互影响。由于单个染料分子的分子间相互作用,这种染料溶液的吸收和荧光行为都会发生显着变化。

罗丹明 6G 水溶液
在罗丹明6G浓水溶液的紫外/可见光谱中,在主吸收带的短波边缘可以观察到肩峰的出现。如果通过稀释溶液来改变浓度(c),并以同样的方式增加比色皿的层厚度(d),那么根据朗伯-比尔定律,人们总是可以预期相同的消光,则以下过程是观察到:等吸光点的出现。

什么是染料聚集Farbstoff-Aggregation?

– 所有相关物质的浓度变化是线性的,dE/dc = 0 – 表明两种(或更多)物质以一种确定的方式相互转化或彼此处于平衡状态。所以这是一个动态平衡。

什么是染料聚集Farbstoff-Aggregation?

解离或二聚常数可以通过实验确定:在稀释系列中,溶液的稀释始终通过层厚度的变化进行补偿,可以计算“有效消光系数”。初始浓度由未发生二聚化的高度稀释溶液的紫外光谱确定。由于各个吸收在朗伯-比尔定律中表现相加,因此可以使用反应方程或质量作用定律来制定有效消光或有效消光系数。

疏水相互作用
有机染料的聚集尤其发生在水或具有高离子强度的溶剂中。主要原因是分子间范德华力:通过所谓的“疏水相互作用”,亲脂性分子试图“避开”亲水性水分子,即为水化壳提供尽可能小的表面积。这种现象还导致玻璃表面上的染料吸附或与基质分子的非特异性结合。

形成二聚体或更高聚集体的倾向取决于
 

染料的浓度——浓度越高,聚集越强
溶剂——与乙醇或其他有机溶剂相比,在水或甲醇中通常可以观察到聚集。通过比较ATTO 565在水性 PBS 缓冲液(pH 7.4)和乙醇与TFAc中的 等浓度溶液的吸收光谱,令人印象深刻地证明了这一点:

什么是染料聚集Farbstoff-Aggregation?

存在任何电解质(盐),特别是当氯仿等有机溶剂中出现离子对时
温度– 在较高温度下,热运动使聚集更加困难
-染料的 分子结构– 具有亲水基团的染料,如ATTO 488、ATTO 532、ATTO 542等,在水溶液中不会表现出任何聚集 ,与疏水性染料如ATTO Rho6G、ATTO Rho11、ATTO相比Rho12等:

什么是染料聚集Farbstoff-Aggregation?

由于这是动态平衡(如上所述),因此可以通过稀释溶液将二聚体转化回单体。当测量的吸收光谱不再随着进一步稀释和层厚度的相应增加而变化时,达到“单体光谱”。对于大多数疏水性ATTO染料,这种情况发生在消光度约为 0.04 时(层厚 1 cm;c = 10 -7 – 10 -6 mol/l)。什么是染料聚集Farbstoff-Aggregation?

蛋白质缀合物中的分子内相互作用/DOL 测定
当染料-NHS 酯与蛋白质的氨基反应时,可以形成染料缀合物,其中共价结合的染料分子非常接近并且可以彼此相互作用。这以同样的方式通过吸收光谱的强烈变化来表达,正如在 ATTO 565-steptavidin 缀合物的示例中可以清楚地看到的:在缀合物光谱中观察到额外的短波吸收带,

什么是染料聚集Farbstoff-Aggregation?

类似于浓度足够高的染料水溶液的“二聚体带”。由于在这种情况下共价结合的染料分子之间存在分子内相互作用,因此当缀合物溶液稀释时吸收光谱不会改变
对于这种情况,染料-蛋白质比率(标记度,DOL)的确定在我们的“蛋白质标记“工作说明中进行了描述。


两种形式的聚集体之间存在基本区别:

H-聚集体(H = 低色),短波长。
当两个或多个染料分子以一种其跃迁偶极矩(通常在 S 0 – S 1过渡中彼此平行(沿着发色团系统的纵轴运行)。观察到向低色位移的吸收带 – 与单体吸收相反。

由于空间接近,电子结构相互影响,可以说,两个分子必须一起观察。能级被分裂,并且量子力学现在允许的吸收跃迁能量更高,因此波长更短。从这种较高的激发态,发生快速内部转换(IC),从而使荧光猝灭。

什么是染料聚集Farbstoff-Aggregation?

J-聚集体(根据 EE Jelley 的说法),长波
这种类型的聚集会导致吸收带的长波偏移,这与能带半宽度的显着减小有关。

J-聚集体通常存在于聚次甲基染料中,例如花青、部花青或类似的发色团。Jelley 和 Scheibe 使用假异花青染料独立观察到了这一现象。对于由单个染料组装形成的“超分子聚合物”的模型描述,已经提出了各种类型。对分子关系简单的描述是这样的想法:各个分子一个接一个地排列,使得跃迁偶极矩也位于一条线上。分子的共同考虑导致能级的分裂:量子力学允许的跃迁现在能量较低,

什么是染料聚集Farbstoff-Aggregation?

溶剂成分、盐或其他物质的添加以及浓度会极大地影响聚集。在理想条件下,可以在紫外/可见光谱中找到所描述的极窄吸收带。此外,与 H 聚集体相比,这里当然可以观察到荧光,特别是在较低温度下:发射带的最大值也很窄,仅比吸收最大值长几纳米。
根据实验条件,文献还描述了吸收带的“加宽”,这可以通过包含 J 聚集体的禁电子跃迁来解释。

ATTO 488 标记的磷脂
溶液纯氯仿中的ATTO 488标记磷脂最初因其意想不到的颜色而令人惊讶:暗淡的溶液呈现粉红色至洋红色,而不是带有亮绿色荧光的浅黄色。长波位移吸收可以通过 J 聚集体的存在来解释。当所讨论的溶液用甲醇稀释时,颜色变为通常的黄色,并且可以看到强烈的荧光。通过改变溶剂成分,聚集体被推回。
下图显示了ATTO 488标记的1,2-二棕榈酰-sn-甘油-3-磷酸乙醇胺 (DPPE) 在纯氯仿和氯仿/甲醇(8:2,v/v)溶剂混合物中的溶液:

什么是染料聚集Farbstoff-Aggregation?

什么是电位滴定?

什么是电位滴定?

电位滴定是通过测量滴定过程中电位的变化来确定滴定终点的方法。与直接电位法相比,电位滴定法不需要精确测量电极电位值。因此,温度和液接界电位的影响并不重要。 ,其精度优于直接电位法。普通滴定方法是依靠指示剂的颜色变化来指示滴定终点。如果待测溶液有色或浑浊,指示终点就比较困难,或者根本找不到合适的指示剂。 。电位滴定是根据电极电位的突然跳变来指示滴定终点的。滴定到达终点前后,液滴中待测离子的浓度往往连续变化n个数量级,引起电位突然跳变,仍然通过消耗的量来计算被测组分的含量。滴定剂。

电位滴定定义

使用不同的指示电极,电位滴定可进行酸碱滴定、氧化还原滴定、络合滴定、沉淀滴定。在酸碱滴定中,可以使用PH玻璃电极作为指示电极,在氧化还原滴定中,可以使用铂电极作为指示电极。在络合滴定中,如果使用EDTA作为滴定剂,则可以使用汞电极作为指示电极。沉淀滴定中,若用硝酸银滴定卤素离子,可用银电极作为指示电极。滴定过程中,随着滴定剂的不断加入,电极电位E不断变化,当电极电位突变时滴定达到终点。用微分曲线比用普通滴定曲线更容易确定滴定终点。
若采用自动电位滴定仪,滴定过程中可自动绘制滴定曲线,自动寻找滴定终点,自动给出体积,使滴定快速、方便。
电位滴定时,将参比电极和指示电极插入被测溶液中,形成工作电池。随着滴定剂的加入,由于发生化学反应,被测离子浓度不断变化,指示电极的电位也随之变化。电势跳跃发生在等当点附近。因此,通过测量工作池电动势的变化,即可确定滴定的终点。

电位滴定仪

包括滴定管、滴定杯、指示电极、参比电极。

电位滴定以确定终点

使用绘制电势的方法来确定曲线。
电位滴定曲线是滴定过程中电极电位值(电池电动势)E与标准溶液添加体积V的关系图。
根据绘制方法的不同,电位滴定曲线有EV曲线、普通电位滴定曲线三种,拐点e为等当点。
拐点的测定:作两条与滴定曲线成45°相切的直线,平分线与曲线的交点为拐点。
Ee 是等效点电势。
Ve 是添加到当量点的标准溶液的体积。
电位跳跃范围和斜率越大,分析误差越小。
曲线,一阶导数曲线,一阶导数曲线。
曲线峰值处的点 e 是当量点。
利用相邻的两个E、V值求:
=0为等当点
式中,V1、V2为该值的计算值。

电位滴定技术特点

与使用指示剂的容量分析相比,电位滴定具有许多优点。首先,它可用于有色或浑浊溶液的滴定。无法使用指标;在没有或缺乏指标的情况下,采用此方法来解决问题;也可用于试液浓度较稀或滴定反应不全的情况;灵敏度和准确度高,可实现自动连续测定。因此,它具有广泛的用途。

电位滴定应用

根据滴定反应的类型,电位滴定可用于中和滴定(酸碱滴定)、沉淀滴定、络合滴定和氧化还原滴定。

酸碱滴定

一般酸碱滴定可采用电位滴定法;特别适用于弱酸(碱)滴定;极弱的酸可以在非水溶液中滴定;
指示电极:玻璃电极、锑电极;
参比电极:甘汞电极;
(1)在乙酸介质中用HClO 4 滴定吡啶;
(2)在乙醇介质中用HCl溶液滴定三乙醇胺。
(3)在异丙醇和乙二醇的混合溶液中用HCl溶液滴定苯胺和生物碱;
(4)苯酚可以在二甲基甲酰胺介质中滴定;
(5)高氯酸、盐酸和水杨酸的混合物可以在丙酮介质中滴定。

沉淀滴定

参比电极:双盐桥甘汞电极;甘汞电极
(1) 指示电极:银电极
标准溶液:AgNO₃;
滴定对象:Clˉ、Brˉ、Iˉ、CNSˉ、Sˉ²、CNˉ等,
连续滴定Clˉ、Brˉ、Iˉ;
(2) 指示电极:汞电极
标准溶液:硝suan汞;

滴定对象:Clˉ、Brˉ、Iˉ、CNSˉ、Sˉ²、C2O₄ˉ² (3)指示
电极:铂电极
标准溶液:K4[Fe(CN)6;
滴定对象:Pd²﹢、Cd²﹢、Zn²﹢、Ba²﹢等。

还原滴定

参比电极:甘汞电极;
指示电极:铂电极;
(1)标准溶液:高锰酸钾;
滴定对象:Iˉ、NO₃ˉ、Fe²﹢、V⁴﹢、Sn²﹢、C2O₄²ˉ。
(2) 标准溶液:K₄[Fe(CN)6;
滴定对象:Co²﹢。
(3)标准溶液:K2Cr2O7;
滴定对象:Fe²﹢、Sn²﹢、Iˉ、Sb³﹢等。

配位滴定

参比电极:甘汞电极;
标准溶液:EDTA
(1)指示电极:汞电极;
滴定对象:Cu²+、Zn²+、Ca²+、Mg²+、Al³+。
(2)指示电极:氯电极;
Al+用氟化物滴定。
(3)指示电极:钙离子选择电极;
滴定对象:Ca²+等

什么是实时定量 PCR?

什么是实时定量 PCR?

实时定量 PCR 是一种使用荧光化学物质测量 DNA 扩增反应中每个聚合酶链式反应 (PCR) 循环后产物总量的方法。通过内参或外参方法对待测样品中特定DNA序列进行定量分析的方法。

实时PCR是在PCR扩增过程中通过荧光信号实时检测PCR过程。由于在PCR扩增的指数期内,模板的Ct值与模板的初始拷贝数之间存在线性关系,因此成为定量的依据。

PCR技术原理

所谓实时定量PCR技术是指在PCR反应体系中添加荧光基团,利用荧光信号的积累实时监测整个PCR过程,最后通过标准品对未知模板进行定量分析的方法。曲线。

检测方法

1. SYBR Green I 方法:

PCR反应体系中加入过量的SYBR荧光染料。 SYBR荧光染料特异性掺入DNA双链后,发出荧光信号,而未掺入链中的SYBR染料分子不会发出任何荧光信号,从而保证了荧光信号的增加全同步随着PCR产物的增加。

2.TaqMan探针法:

当探针完整时,报告基团发出的荧光信号被猝灭基团吸收;在 PCR 扩增过程中,Taq 酶的 5'-3' 核酸外切酶活性裂解并降解探针,形成报告荧光团和猝灭基团。将荧光基团分开,使荧光监测系统能够接收到荧光信号,即每扩增一条DNA链,就形成一个荧光分子,荧光信号的积累与DNA链的形成全同步。 PCR 产物。

技术原理

荧光素标记的Taqman探针与模板DNA混合后,完成高温变性、低温复性、适宜温度延伸的热循环,根据模板DNA互补的Taqman探针被切断聚合酶链反应定律。荧光素在反应体系中呈游离态,在特定光激发下发出荧光。随着循环次数的增加,扩增的目的基因片段呈指数增长。通过实时检测随扩增变化而变化的相应荧光信号强度,获得Ct值,同时以已知模板浓度的几种标准品作为对照,计算样品中目的基因的拷贝数可以得到待测试的。

CT值

Ct值(Cycle Threshold,循环阈值)的含义是:每个反应管内荧光信号达到设定阈值时所经历的循环次数

1. 荧光阈值(threshold)设置

PCR反应的前15个循环的荧光信号作为荧光背景信号,荧光阈值默认(default)设置为第3-15个循环的荧光信号标准差的10倍,即:阈值 = 10*SDcycle 3- 15

2. Ct值与起始模板的关系

每个模板的Ct值与模板初始拷贝数的对数呈线性关系,公式如下。
Ct=-1/lg(1+Ex)*lgX0+lgN/lg(1+Ex) 初始拷贝数越高,Ct 值越低。使用已知初始拷贝数的标准品可以制作标准曲线,其中横坐标表示初始拷贝数的对数,纵坐标表示Ct值。因此,只要获得未知样品的Ct值,就可以从标准曲线计算出该样品的起始拷贝数。
n为扩增反应的循环数,X0为初始模板量,Ex为扩增效率,N为当荧光扩增信号达到阈值强度时扩增产物的量。

荧光化学品

实时定量PCR中使用的荧光物质可分为荧光探针和荧光染料两类。原理简述如下:
1. TaqMan荧光探针:在PCR扩增过程中,随一对引物一起添加特异性荧光探针。探针是寡核苷酸,两端都标记有报告荧光基团和猝灭剂。荧光团。当探针完整时,报告基团发出的荧光信号被猝灭基团吸收;在 PCR 扩增过程中,Taq 酶的 5'-3' 核酸外切酶活性裂解并降解探针,形成报告荧光团和猝灭基团。荧光基团分离,使荧光监测系统能够接收到荧光信号,即每扩增一条DNA链就形成一个荧光分子,荧光信号的积累与PCR的形成全同步产品。新型TaqMan-MGB探针使该技术能够同时进行定量基因分析和基因突变(SNP)分析,有望成为基因诊断和个性化医疗分析的技术平台。

2. SYBR荧光染料:在PCR反应体系中,加入过量的SYBR荧光染料,SYBR荧光染料非特异性掺入DNA双链,并发出荧光信号,而未掺入DNA双链的SYBR染料分子则发出荧光信号。链不会发射任何荧光。信号,从而保证荧光信号的增加与PCR产物的增加全同步。 SYBR 仅与双链 DNA 结合,因此熔解曲线可用于确定 PCR 反应是否具有特异性。

3、分子信标:是一种茎环双标记寡核苷酸探针,在5、3端形成约8个碱基的发夹结构。两端的核酸序列互补配对,导致荧光团和猝灭基团非常接近并且不发出荧光。 PCR产物生成后,在退火过程中,分子信标的中间部分与特定的DNA序列配对,荧光基因和猝灭基因分离,产生荧光[1]。

传统定量PCR

1. 传统定量PCR方法介绍

1)内参法:将定量的内标和引物加入到不同的PCR反应管中,通过基因工程方法合成内标。上游引物有荧光标记,下游引物没有荧光标记。在扩增模板的同时,内标也被扩增。 PCR产物中,由于内标和目标模板的长度不同,可以通过电泳或高效液相分离两者的扩增产物,并分别测定它们的荧光强度,内标可以用作定量待检测模板的对照。
2)竞争法:选择含有突变克隆产生的新内切酶位点的外源竞争模板。在同一反应管中,用同一对引物(其中一个引物带有荧光标记)同时扩增待测样品和竞争模板。扩增后,PCR产物用核酸内切酶消化,竞争模板的产物被消化成两个片段,而待测模板则不被酶切。可以通过电泳或高效液相分离两种产物,并可以单独测量荧光强度,根据已知模板推断未知模板的初始拷贝数。
3)PCR-ELISA法:利用di高辛或生物素等标记引物,将扩增产物与固相板上的特异性探针结合,然后加入抗di高辛或生物素酶标抗体-辣根过氧化反应。底物酶结合,最后酶使底物显色。常规的PCR-ELISA方法只是定性实验。若加入内标物制作标准曲线,也可达到定量检测的目的。

2. 内标在传统定量中的作用

由于传统的定量方法是终点检测,即PCR到达平台期后进行检测,而当PCR通过对数期扩增到达平台期时,检测重现性极差。同一个模板在96孔PCR机上重复96次,得到的结果相差很大,因此无法直接从终产物的量计算出起始模板的量。通过添加内标可以部分消除最终产品定量造成的误差。但即便如此,传统的定量方法也只能算是半定量和粗略的定量方法。

3.内标对定量PCR的影响

如果在待测样品中加入初始拷贝数已知的内标,则PCR反应变成双PCR,双PCR反应中两个模板之间存在干扰和竞争,特别是当内标的初始拷贝数为已知的内标时。两个模板差异比较大的时候,这种竞争就会更加显着。但由于待测样品的初始拷贝数未知,因此无法添加适量的已知模板作为内标。也正是因为这个原因,传统的定量方法虽然增加了内标,但仍然只是一种半定量方法。

实时定量PCR

实时荧光定量PCR技术有效解决了传统定量仅终点检测的局限性,实现每个循环检测一次荧光信号强度,并记录在计算机软件中,通过计算Ct值对每个样品,根据标准曲线获得定量结果。因此,无内标实时定量PCR基于两个基础:
1)Ct值的重现性 当PCR循环达到Ct值所在的循环数时,刚刚进入真正的指数扩增阶段(对数阶段)。此时,微小的误差还没有被放大,因此Ct值的重现性好。 ,即同一个模板在不同时间扩增或者在不同管中同时扩增,得到的Ct值是恒定的。
2)Ct值与起始模板的线性关系 由于Ct值与起始模板的对数之间存在线性关系,因此可以利用标准曲线来定量测定未知样品。因此,实时荧光定量PCR是一种利用外标曲线的定量方法。方法。
与内标法相比,外标曲线定量法是一种准确、可靠的科学方法。使用外标曲线的实时荧光定量PCR是迄今为止最准确、重现性好的定量方法。已得到世界的认可,广泛应用于基因表达研究、转基因研究、药效评估、病原检测等领域。

实时荧光定量PCR的定量方法

在实时PCR中,模板定量有两种策略:相对定量和绝对定量。

实时荧光定量PCR相关应用

临床疾病诊断

各类肝炎、艾滋病、流感、肺结核、性病等传染病的诊断及疗效评价;地中海贫血、血友病、性别发育不良、智力低下综合征、胎儿畸形的优生学和产前检查;肿瘤标志物和肿瘤基因检测实现肿瘤疾病的诊断;基因检测实现了遗传病的诊断。

动物疫病检测

流感、新城疫、口蹄疫、猪瘟、沙门氏菌、大肠杆菌、胸膜肺炎放线杆菌、寄生虫病等、炭疽杆菌。

食品安全

乳制品企业中食品源性微生物、食品过敏原、转基因生物、坂崎肠杆菌的检测。

科学研究

与医学、农牧业、生物学相关的分子生物学定量研究。

应用行业

各级各类医疗机构、大专院校及科研院所、疾控中心、检验检疫局、兽医站、食品企业及乳品厂等。由于qPCR是病原基因核酸的实时定量检测,因此
具有更多的特性。与化学发光、时间分辨率、蛋白芯片等免疫学方法相比具有优势。

什么是生物光学标记?

什么是生物光学标记?

生物光学标记是指用具有光学特性的标记物对生物分子进行标记,从而达到检测和识别的目的。根据应用光学特性的不同,通常可分为荧光分子标记、荧光蛋白标记、生物发光标记、化学发光标记等。根据标记目的,包括生物分子标记、生化标记、细胞学标记、形态标记等。

生命分子的探测、生命过程的观察、特定生物组织的识别通常因其微观性和隐蔽性而难以直接观察,甚至超出仪器的检测范围。它可以“脱颖而出”并借助相应仪器进行检测。

对目前检测方法可以检测到的特定生物分子、细胞或组织进行标记并检测分子和纳米颗粒,然后通过检测分子/颗粒的数量和分布来获取特定分子、细胞或组织的特征,进而获得某些区域以及细胞或生物体内分子、生化、生理指标的反应和信号。这种标记过程通常称为生物标记。生物光学标记是指用具有光学特性的标记物对生物分子进行标记,从而达到检测和识别的目的。根据应用光学特性的不同,通常可分为荧光分子标记、荧光蛋白标记、生物发光标记、化学发光标记、根据标记目的,包括生物分子标记、生化标记、细胞学标记、形态学标记等。

生物光学标记物,由于采用光学方法,借助成熟的光学高灵敏度检测仪器,可以实现高对比度、高分辨率、高灵敏度、高信噪比,方便快捷地进行检测。选择作为主要生物标志物方式。特别是荧光蛋白发现后,生物光学标记得到了快速的应用发展。 Osamu Shimomura、Martin Charfie 和 Roger Tsien 因其对绿色荧光蛋白的发现和研究而获得 2008 年诺贝尔化学奖。生物光学标签现在广泛用作生命科学和医学研究中的示踪剂。

生物光学标记研究和应用的历史
在生物研究中,科学家经常使用发出荧光的荧光分子作为生物标记。通过将这种荧光分子化学连接到其他不可见的分子上,以前不可见的部分变得可见。生物学家一直在使用这种标记方法将原本透明的细胞或细胞器“拉”出暗显微镜视野。

传统荧光分子发光时会产生有毒的氧自由基,导致观察到的细胞死亡,这就是“光毒性”。因此,在绿色荧光蛋白发现之前,科学家只能通过荧光标记的方式进行研究。死细胞的静态结构,或者其毒性作用不得不暂时忽略,而活细胞只能观察很短的时间,而荧光蛋白的光毒性很弱,非常适合标记各种活细胞。

1962 年,这种荧光蛋白在一种名为维多利亚多管发光水母的水母中被发现。其基因产生的蛋白质在受到蓝色波长光激发时会发出绿色荧光。发光过程还需要发光蛋白水母发光蛋白的帮助,而这种蛋白还需要与钙离子(Ca)相互作用。

GFP 的光毒性非常弱,非常适合标记活细胞。然而,从绿色荧光蛋白被发现到用于标记生物样品,却花了20多年的时间。 1993年,Martin Schalfi通过基因重组成功使水母以外的其他生物(如大肠杆菌等)产生绿色荧光蛋白。他不仅证实了绿色荧光蛋白与生物体的相容性,而且建立了利用绿色荧光蛋白研究基因表达的基本方法,而现代许多重大疾病都与基因表达异常有关。

后来,美籍华人钱永健系统地研究了绿色荧光蛋白的工作原理,并对其进行了大刀阔斧的化学改造,不仅大大增强了其发光效率,而且开发出了红色、蓝色、黄色荧光蛋白。 ,使荧光蛋白真正成为生物学家根据需要进行选择的工具箱。生物实验室常用的荧光蛋白大多是钱永健修饰的变体。

有了这些荧光蛋白,利用光学仪器,科学家们似乎在细胞中安装了“灯塔”,让它们能够实时监测各种生命过程。通过沙尔菲的基因克隆思想,科学家迄今已培育出荧光小鼠和荧光猪。
此外,除了上述荧光分子和荧光蛋白标记外,2000年以来,随着生物纳米技术的发展,一些新型的、生物相容性的光学纳米标记也得到了研究和开发,如上转换纳米粒子、量子点等。 、长延时荧光粒子等都已被研究和利用。它被用作细胞和活体的生物标记,作为生物光学成像“传感”的有力的工具。

生物光学标记的类型和应用
荧光分子/纳米颗粒标记
荧光分子包括有机试剂或金属螯合物;荧光纳米粒子包括上转换、量子点等,在紫外-可见-近红外区域具有较强的特征荧光。用这种分子/纳米颗粒标记细胞和活体后,可以实现光学示踪检测,或者激发和发射波长、强度、寿命和偏振等荧光特性可以随着极性、折射率等环境特性的变化而敏感地改变、粘度和生物检测可以利用这一特性进行。荧光分子/纳米颗粒标记设计灵活,应用方便。

生物发光标记
生物发光标记是利用荧光素酶(Luciferase)基因来标记细胞或DNA的生物标记方法。标记后,细胞合成荧光素酶,然后添加外源荧光素酶。下面,荧光素氧化后发光。该方法使研究人员能够直接监测生物体中的细胞活动和基因行为。通过该系统,可以观察活体动物中肿瘤生长和转移、传染病的发展以及特定基因的表达等生物过程。由于其操作极其简单、结果直观、灵敏度高,已广泛应用于生命科学、医学研究和药物开发。

荧光蛋白标记荧光蛋白
将基因片段与目的基因连接,转染细胞,正常表达后,可在激发光下用荧光显微镜、流式细胞仪或激光共聚焦显微镜观察检测。荧光蛋白包括绿色荧光蛋白(GFP)、红色荧光蛋白(RFP)、蓝色荧光蛋白(BFP)和黄色荧光蛋白(YFP)。它对活细胞无害,并且可以长时间观察。因此被广泛应用于转基因动物、融合标记、基因治疗、活细胞中蛋白质功能定位和迁移变化、病原菌侵入活细胞的分子过程等研究。荧光蛋白作为新一代基因转移报告基因和/或定位标记在生命科学研究中受到越来越多的关注

化学发光标记
将可发光的化合物附着到待检测分子(蛋白质、核酸等)上的方法。也可以连接半抗原(如生物素等),然后与酶标抗半抗原抗体或亲和素结合,与半抗原上的酶标抗体或亲和素结合。可以催化化学发光底物发生化学变化而发光。例如,抗体分子用吖啶酯标记,被触发器激活后发光,用于检测固相抗原。

什么是聚乙烯?

什么是聚乙烯?

聚乙烯(PE)是由乙烯聚合而成的热塑性树脂。在工业上,还包括乙烯与少量α-烯烃的共聚物。聚乙烯无味、无毒,手感如蜡,具有优良的耐低温性能(低使用温度可达-100~-70℃),化学稳定性好,能抵抗大多数酸碱的侵蚀(不耐氧化性质)酸)。常温下不溶于一般溶剂,吸水率低,电绝缘性优良。

聚乙烯于1922年由英国ICI公司合成。1933年英国博内曼化学工业公司发现乙烯在高压下可聚合形成聚乙烯。该法于1939年工业化,俗称高压法。 1953年,德意志联邦共和国的K.齐格勒发现,以TiCl4-Al(C2H5)3为催化剂,乙烯也可以在较低压力下聚合。此法于1955年由德意志赫斯特公司投入工业生产,俗称低压聚乙烯。 20世纪50年代初,美国飞利浦石油公司发现,以氧化铬-硅铝为催化剂,乙烯在中压下可聚合生成高密度聚乙烯,1957年实现工业化生产。20世纪60年代,加拿大杜邦公司开始以乙烯和α-烯烃为原料,采用溶液法生产低密度聚乙烯。 1977年,美国联合碳化物公司和陶氏化学公司先后采用低压法制造低密度聚乙烯,称为线性低密度聚乙烯,其中尤以联合碳化物公司的气相法最为重要。线性低密度聚乙烯的性能与低密度聚乙烯相似,并且具有高密度聚乙烯的一些特性。加之生产中能耗较低,因此发展极为迅速,已成为最引人注目的新型合成树脂之一。加拿大杜邦公司开始以乙烯和α-烯烃为原料,采用溶液法生产低密度聚乙烯。 1977年,美国联合碳化物公司和陶氏化学公司先后采用低压法制造低密度聚乙烯,称为线性低密度聚乙烯,其中尤以联合碳化物公司的气相法最为重要。线性低密度聚乙烯的性能与低密度聚乙烯相似,并且具有高密度聚乙烯的一些特性。加之生产中能耗较低,因此发展极为迅速,已成为最引人注目的新型合成树脂之一。加拿大杜邦公司开始以乙烯和α-烯烃为原料,采用溶液法生产低密度聚乙烯。 1977年,美国联合碳化物公司和陶氏化学公司先后采用低压法制造低密度聚乙烯,称为线性低密度聚乙烯,其中尤以联合碳化物公司的气相法最为重要。线性低密度聚乙烯的性能与低密度聚乙烯相似,并且具有高密度聚乙烯的一些特性。加之生产中能耗较低,因此发展极为迅速,已成为最引人注目的新型合成树脂之一。美国联合碳化物公司和陶氏化学公司先后采用低压法制造低密度聚乙烯,称为线性低密度聚乙烯,其中联合碳化物公司的气相法最为重要。线性低密度聚乙烯的性能与低密度聚乙烯相似,并且具有高密度聚乙烯的一些特性。加之生产中能耗较低,因此发展极为迅速,已成为最引人注目的新型合成树脂之一。美国联合碳化物公司和陶氏化学公司先后采用低压法制造低密度聚乙烯,称为线性低密度聚乙烯,其中联合碳化物公司的气相法最为重要。线性低密度聚乙烯的性能与低密度聚乙烯相似,并且具有高密度聚乙烯的一些特性。加之生产中能耗较低,因此发展极为迅速,已成为最引人注目的新型合成树脂之一。具有高密度聚乙烯的一些特性。加之生产中能耗较低,因此发展极为迅速,已成为最引人注目的新型合成树脂之一。具有高密度聚乙烯的一些特性。加之生产中能耗较低,因此发展极为迅速,已成为最引人注目的新型合成树脂之一。

低压法的核心技术在于催化剂。德国齐格勒发明的TiCl4-Al(C2H5)3体系是第一代聚烯烃催化剂。 1963年,比利时索尔维公司以镁化合物为载体的第二代催化剂,催化效率达到每克钛数万至数十万克聚乙烯。使用第二代催化剂还可以省去去除催化剂残留物的后处理工序。后来,开发了气相法的高效催化剂。 1975年,意大利蒙特爱迪生集团公司研制出一种催化剂,无需造粒即可直接生产球形聚乙烯。被称为第三代催化剂,这是高密度聚乙烯生产的又一次革命。

聚乙烯对环境应力(化学和机械作用)非常敏感,并且与聚合物的化学结构和加工相比,其对热老化的抵抗力较差。聚乙烯可以通过传统的热塑性成型方法进行加工。用途广泛,主要用于制造薄膜、包装材料、容器、管道、单丝、电线电缆、日用品等,还可用作电视机、雷达等的高频绝缘材料。随着石油化学工业的发展,聚乙烯生产迅速发展,产量约占塑料总产量的1/4。 1983年,世界聚乙烯总产能为24.65吨,在建装置产能为3.16吨。根据2011年最新统计,全球产能达到96吨。聚乙烯生产的发展趋势表明,生产和消费正在逐步向亚洲转移,中国日益成为最重要的消费市场。

分类
聚乙烯按聚合方法、分子量和链结构分为高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)和线性低密度聚乙烯(LLDPE)。

LDPE
性能:无味、无臭、无毒,表面无光泽,乳白色蜡状颗粒,密度约0.920g/cm3,熔点130℃~145℃。不溶于水,微溶于碳氢化合物等,能承受大多数酸、碱的侵蚀,吸水率低,在低温下仍能保持柔韧性,电绝缘性高。
生产工艺:主要有高压管法和釜法两种。为了降低反应温度和压力,管式工艺一般采用低温高活性引发剂引发聚合体系,以高纯乙烯为主要原料,丙烯、丙烷等进行聚合。在330℃、150-300MPa的条件下进行。在反应器中引发聚合的熔融聚合物必须在高压、中压和低压下冷却和分离。分离后送至高压(30MPa)压缩机入口,而低压循环气经冷却分离后送至低压(0.5MPa)压缩机循环使用,熔融聚乙烯经高压、低压分离后送至造粒机。对于水中造粒,造粒时,企业可以根据不同的应用领域添加适当的添加剂,颗粒包装出厂。
用途:可采用注塑、挤出、吹塑等加工方法。主要用作农用薄膜、工业包装薄膜、医药及食品包装薄膜、机械零件、日用品、建筑材料、电线、电缆绝缘层、涂料及合成纸等。

LLDPE
性能:由于LLDPE和LDPE的分子结构明显不同,因此性能也不同。与LDPE相比,LLDPE具有优异的耐环境应力开裂性和电绝缘性,更高的耐热性、耐冲击性和耐穿刺性。生产工艺:LLDPE树脂主要采用全密度聚乙烯设备生产,代表性的生产工艺是Innovene工艺和UCC的Unipol工艺。
用途:采用注塑、挤出、吹塑等成型方法生产薄膜、日用品、管材、电线电缆等。

HDPE
性能:本色,颗粒呈圆柱形或扁圆形,颗粒光滑,任意方向粒径应为2毫米~5毫米,无机械杂质,热塑性。粉末为白色粉末,合格品允许带微黄色。常温下不溶于一般溶剂,但长期接触脂肪烃、芳香烃和卤代烃会溶胀,70℃以上微溶于甲苯和乙酸。在空气中加热和阳光的影响下会发生氧化。能抵抗大多数酸、碱的侵蚀。吸水率低,在低温下仍能保持柔软性,并具有较高的电绝缘性。
生产工艺:采用气相法和浆液法两种生产工艺。
用途:采用注塑、吹塑、挤出、滚塑等成型方法生产薄膜制品、日用品及各种规格的中空容器、管材、包装、压延带和扎带、绳索、渔网和编织物。光纤、电线电缆等

性能
一般特性
聚乙烯树脂为无毒、无味的白色粉末或颗粒,外观乳白色,有蜡状手感,吸水率低,小于0.01%。聚乙烯薄膜是透明的,并随着结晶度的增加而降低。聚乙烯薄膜透水性低,但透气性高,不适合保鲜包装,但适合防潮包装。易燃,氧指数17.4,燃烧时低烟,有少量熔融液滴,火焰上黄下蓝,有石蜡气味。聚乙烯具有较好的耐水性。产品表面为非极性,不易粘合和印刷,通过表面处理得到了改善。支链较多,抗光降解和抗氧化能力较差。
其分子量在10,000至100,000范围内。如果分子量超过10万,则为超高分子量聚乙烯。分子量越高,其物理机械性能越好,越接近工程材料所需水平。但分子量越高,加工就越困难。聚乙烯的熔点为100-130℃,具有优异的耐低温性能。在-60℃下仍能保持良好的机械性能,但工作温度为80~110℃。
常温下不溶于任何已知溶剂,70℃以上可少量溶于甲苯、乙酸戊酯、三氯乙烯等溶剂。

化学性质
聚乙烯化学稳定性好,耐稀硝酸、稀硫酸及任何浓度的盐酸、氢氟酸、磷酸、甲酸、醋酸、氨水、胺类、过氧化氢、氢氧化钠、氢氧化钾等。 解决方案。但不耐强氧化腐蚀,如发烟硫酸、浓硝酸、铬酸和硫酸混合物。在室温下,上述溶剂会缓慢侵蚀聚乙烯,而在90-100℃时,浓硫酸和浓硝酸会迅速侵蚀聚乙烯,导致其破坏或分解。聚乙烯易光氧化、热氧化、臭氧分解,在紫外线作用下易降解。炭黑对聚乙烯具有优良的遮光效果。辐照后会发生交联、断链和形成不饱和基团等反应。

机械性能
聚乙烯的机械性能一般,拉伸强度低,抗蠕变性不好,抗冲击性好。冲击强度LDPE>LLDPE>HDPE,其他力学性能LDPE结晶度和相对分子量,随着这些指标的提高,其力学性能提高。耐环境应力开裂性不好,但当相对分子量增大时,则有所改善。耐穿刺性能好,其中以LLDPE最好。

热性能
聚乙烯的耐热性不高,随着相对分子量和结晶度的增加而提高。耐低温性能好,脆化温度一般可达到-50℃以下;随着相对分子质量的增加,低可达-140℃。聚乙烯的线膨胀系数较大,可达(20~24)×10-5/K。高导热性。

电气特性
由于聚乙烯是非极性的,因此具有优异的电气性能,介电损耗低,介电强度高。可用作调频绝缘材料、耐电晕塑料、高压绝缘材料。

环境特性
聚乙烯是烷烃惰性聚合物,具有良好的化学稳定性。常温下耐酸、碱、盐水溶液的腐蚀,但不耐发烟硫酸、浓硝酸、铬酸等强氧化剂。聚乙烯在60℃以下不溶于一般溶剂,但长期与脂肪烃、芳香烃、卤代烃等接触会膨胀或龟裂。当温度超过60℃时,可少量溶于甲苯、乙酸戊酯、三氯乙烯、松节油、矿物油和石蜡;温度高于100℃时,可溶于四氢化萘。
由于聚乙烯分子中含有少量双键和醚键,日晒雨淋会引起老化,需要通过添加抗氧化剂和光稳定剂来改善。

加工特性
由于LDPE和HDPE流动性好,加工温度低,粘度适中,分解温度低,在惰性气体中300℃高温下也不分解,是加工性能良好的塑料。但LLDPE的粘度稍高,电机功率需增加20%~30%;容易发生熔体破裂,需要加大口模间隙,添加加工助剂;加工温度稍高,可达200~215℃。聚乙烯吸水率低,加工前不需要干燥。
聚乙烯熔体是非牛顿流体,其粘度随温度波动较小,但随剪切速率的增加而迅速下降,且呈线性关系,其中LLDPE下降最慢。
聚乙烯制品在冷却过程中容易结晶,因此加工时应注意模具温度。为了控制产品的结晶度,使其具有不同的性能。聚乙烯的成型收缩率较大,设计模具时必须考虑这一点。

改性
聚乙烯的改性品种主要有氯化聚乙烯、氯磺化聚乙烯、交联聚乙烯和共混改性品种。
氯化聚乙烯:用氯部分取代聚乙烯中的氢原子而得到的无规氯化物。氯化是在光或过氧化物引发下进行的,工业上主要采用水悬浮法生产。由于原料聚乙烯的分子量和分布、支化度、氯化后的氯化度、氯原子分布和残余结晶度的差异,可以获得从橡胶状到硬质塑料的氯化聚乙烯。主要用途是作为聚氯乙烯的改性剂,提高聚氯乙烯的抗冲击性能。氯化聚乙烯本身还可用作电绝缘材料和接地材料。
氯磺化聚乙烯:聚乙烯与含有二氧化硫的氯反应时,分子中部分氢原子被氯和少量磺酰氯基团取代,得到氯磺化聚乙烯。主要工业方法是悬浮法。氯磺化聚乙烯具有耐臭氧、耐化学腐蚀、耐油、耐热、耐光、耐磨、拉伸强度高等特点。是一种综合性能良好的弹性体,可用于制作与食品接触的设备零件。
交联聚乙烯:采用辐射(X射线、电子束或紫外线等)或化学方法(过氧化物或有机硅交联)使线性聚乙烯成为网状或体状的交联聚乙烯。其中,有机硅交联法工艺简单,运行成本低,成型和交联可分步进行,因此吹塑和注射成型较为合适。交联聚乙烯的耐热性、耐环境应力开裂性和机械性能较聚乙烯有很大提高,适用于大型管材、电缆电线、滚塑制品。
聚乙烯共混改性:线性低密度聚乙烯与低密度聚乙烯共混后,可用于加工薄膜等产品,产品性能优于低密度聚乙烯。聚乙烯与乙丙橡胶共混可生产用途广泛的热塑性弹性体。

生产工艺
聚乙烯按聚合压力可分为高压法、中压法和低压法。
采用高压法生产低密度聚乙烯。这种方法很早就被开发出来了。该法生产的聚乙烯约占聚乙烯总产量的2/3,但随着生产技术和催化剂的发展,其增长速度已明显落后于低压法。就低压法而言,有浆液法、溶液法和气相法。淤浆法主要用于生产高密度聚乙烯,而溶液法和气相法不仅可以生产高密度聚乙烯,还可以通过添加共聚单体生产中、低密度聚乙烯,又称线性低密度聚乙烯。乙烯基塑料。各种低压工艺正在迅速发展。

高压法
以氧气或过氧化物为引发剂,将乙烯聚合成低密度聚乙烯的方法。乙烯经二次压缩后进入反应器,在100-300MPa的压力、200-300℃的温度和引发剂的作用下聚合成聚乙烯。塑料形式的聚乙烯加入塑料添加剂后经挤出造粒。
所用聚合反应器为管式反应器(管长可达2000m)和罐式反应器。管式工艺单程转化率为20%~34%,单线年生产能力为100kt。釜法工艺单程转化率为20%~25%,单线年生产能力为180kt。

低压法
有浆液法、溶液法和气相法三种。除溶液法外,聚合压力均在2MPa以下。一般步骤包括催化剂制备、乙烯聚合、聚合物分离和造粒。
①浆料法:所得聚乙烯不溶于溶剂,呈浆料状。淤浆聚合条件温和,易于操作。常采用烷基铝作为活化剂,氢气作为分子量调节剂,多采用釜式反应器。来自聚合罐的聚合物浆料经过闪蒸罐、气液分离器进入粉末干燥机,然后造粒。生产过程还包括溶剂回收、溶剂精制等步骤。不同的聚合釜可以串联或并联组合,得到不同分子量分布的产品。
②溶液法:聚合反应在溶剂中进行,但乙烯和聚乙烯均溶解在溶剂中,反应体系为均相溶液。反应温度(≥140℃)和压力(4~5MPa)较高。特点是聚合时间短,生产强度高,可生产高、中、低密度聚乙烯,并能更好地控制产品性能;但溶液法得到的聚合物分子量低、分子量分布窄、物质为固体。含量较低。
③气相法:乙烯在气态下聚合,一般采用流化床反应器。催化剂有铬系和钛系两种,从储罐定量加入床层,利用高速乙烯循环维持床层流化,消除聚合热。所得聚乙烯从反应器底部排出。反应器压力约为2MPa,温度为85-100℃。气相法是生产线性低密度聚乙烯最重要的方法。气相法省去了溶剂回收和聚合物干燥的过程,比溶液法节省15%的投资和10%的运行成本。是传统高压法投资的30%,运行费用的1/6。因此得到了迅速的发展。但气相法在产品质量和品种方面还有待进一步提高。

中压法
采用硅胶负载的铬基催化剂,在环管反应器中,乙烯在中压下聚合生产高密度聚乙烯。
加工应用:可采用吹塑、挤出、注塑等方法加工,广泛用于薄膜、中空制品、纤维及日用杂品的制造。在实际生产中,为了提高聚乙烯对紫外线和氧化的稳定性,改善加工和性能,需要添加少量的塑料助剂。常用的紫外线吸收剂有邻羟基二苯甲酮或其烷氧基衍生物等。炭黑是优良的紫外线屏蔽剂。此外,还添加抗氧化剂、润滑剂、着色剂等,扩大了聚乙烯的应用范围。

应用
高压聚乙烯:一半以上用于薄膜制品,其次是管材、注塑制品、绕包等。
中低压聚乙烯:主要是注塑制品和中空制品。
超高压聚乙烯:由于超高分子聚乙烯优异的综合性能,可用作工程塑料。